1 + 2 + 4 + 8 + ...

serie matematica di numeri interi

In matematica, 1 + 2 + 4 + 8 + ... è la serie divergente infinita i cui termini sono le potenze successive di due. È una serie geometrica di ragione 2:

Somme parziali

modifica

La serie in questione ha come somma parziale:

 

La dimostrazione si può svolgere per induzione su 'n'. Per n=0 la formula è evidentemente corretta. Se poniamo adesso per ipotesi che sia corretta per 'n-1' cioè:

 

Allora abbiamo:

 

Dove il penultimo passaggio segue dall'ipotesi induttiva.

Come detto, la serie diverge all'infinito, e pertanto non possiede una "somma", almeno nel senso più usuale del termine.

Si può però, sfruttando l'approccio di Eulero alle serie divergenti, studiare la serie di potenze associata:

 

che, per x = 1, coincide con la serie originale. Si osservi che questa nuova serie ha raggio di convergenza 1/2, e quindi non converge per x = 1. All'interno del disco di convergenza vale però f(x) = 1/(1 − 2x), e tale f è estendibile a tutto il piano complesso escluso il punto x = 1/2. Dato che f(1) = −1, si dice che la serie originale 1 + 2 + 4 + 8 + … è E-sommabile con E-somma uguale a −1. (La notazione E-sommabilità è dovuta a Hardy in riferimento appunto alle idee di Eulero.)

Alternativamente, un altro modo di associare alla serie il valore −1 consiste nell'osservare che si può riscrivere

 

e che questa equazione ammette le due soluzioni   e  .

Nell'insegnamento della matematica, 1 + 2 + 4 + 8 + … è l'esempio principale presentato per definire una serie geometrica divergente con termini positivi.

Bibliografia

modifica
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica