Cupola pentagonale elongata

In geometria solida, la cupola pentagonale elongata è un poliedro con 22 facce appartenente alla famiglia delle cupole elongate, che può essere costruito, come intuibile dal suo nome, allungando una cupola pentagonale attraverso l'aggiunta di un prisma decagonale alla sua base.

Cupola pentagonale elongata
TipoCupola elongata
Solido di Johnson
J19 - J20 - J21
Forma facce5 Triangoli
15 Quadrati
1 Pentagono
1 Decagono
Nº facce22
Nº spigoli45
Nº vertici25
Caratteristica di Eulero2
Incidenza dei vertici10(42.10)
10(3.43)
5(3.4.5.4)
Gruppo di simmetriaC5v
ProprietàConvessità
Politopi correlati
Poliedro duale
Sviluppo piano

Caratteristiche

modifica

Come detto, questo solido fa parte della famiglia delle cupole elongate; nel caso in cui tutte le sue facce siano poligoni regolari, la cupola pentagonale elongata diventa uno dei 92 solidi di Johnson, in particolare quello indicato come J20, ossia un poliedro strettamente convesso avente come facce dei poligoni regolari ma comunque non appartenente alla famiglia dei poliedri uniformi.[1]

Formule

modifica

Considerando una cupola pentagonale elongata avente come facce dei poligoni regolari aventi lato di lunghezza  , le formule per il calcolo del volume   e della superficie   risultano essere:

 
 

Poliedro duale

modifica

Il poliedro duale della cupola pentagonale elongata è un poliedro avente 10 facce a forma di triangolo isoscele, 5 a forma di aquilone e 10 a forma di quadrilatero irregolare.

Poliedro duale Sviluppo piano del duale
   
  1. ^ Norman W. Johnson, Convex Polyhedra with Regular Faces, in Canadian Journal of Mathematics, vol. 18, Canadian Mathematical Society, 1966, pp. 169-200, DOI:10.4153/CJM-1966-021-8. URL consultato il 14 luglio 2021.

Collegamenti esterni

modifica
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica