Distribuzione congiunta

In probabilità, date due variabili aleatorie X e Y, definite sullo stesso spazio di probabilità, si definisce la loro distribuzione congiunta come la distribuzione di probabilità associata al vettore . Nel caso di due sole variabili, si parla di distribuzione bivariata, mentre nel caso di più variabili si parla di distribuzione multivariata.

Funzione di ripartizione

modifica

La funzione di ripartizione di una distribuzione congiunta è definita come

 

o più generalmente

 

Funzione di densità

modifica

Caso discreto

modifica

Nel caso di variabili aleatorie discrete, la densità discreta congiunta (o funzione di massa di probabilità congiunta) è data da

 

Siccome la densità congiunta è anch'essa una densità, è soddisfatta la seguente equazione:

 
È possibile ottenere le densità marginali dalla densità congiunta in questo modo:  e  

Caso continuo

modifica

Nel caso di variabili aleatorie continue, la densità congiunta è data da

 

dove fY|X(y|x) e fX|Y(x|y) sono le distribuzioni condizionate di Y dato X=x e di X dato Y=y, mentre fX(x) e fY(y) sono le distribuzioni marginali della densità congiunta, rispettivamente per X e Y. Anche in questo caso, è soddisfatto