Rombicosidodecaedro metagirato diminuito

In geometria solida, il rombicosidodecaedro metagirato diminuito è un poliedro con 52 facce che può essere costruito, come intuibile dal suo nome, girando e poi diminuendo un rombicosidodecaedro, ossia ruotando di 36° una cupole pentagonali che possono essere individuate sulla sua superficie e quindi sottraendogli una delle cupole non opposto a non adiacente a quella ruotata.

Rombicosidodecaedro metagirato diminuito
TipoSolido di Johnson
J77 - J78 - J79
Forma facce3+6×2 Triangoli
3+11×2 Quadrati
3+4×2 Pentagoni
1 Decagono
Nº facce52
Nº spigoli105
Nº vertici55
Caratteristica di Eulero2
Incidenza dei vertici5×2(4.5.10)
5×2(3.42.5)
3+16×2(3.4.5.4)
Gruppo di simmetriaCs
ProprietàConvessità
Sviluppo piano

Caratteristiche

modifica

Il rombicosidodecaedro metagirato diminuito è uno dei 92 solidi di Johnson, in particolare quello indicato come J78, ossia un poliedro strettamente convesso avente come facce dei poligoni regolari ma comunque non appartenente alla famiglia dei poliedri uniformi,[1] ed è il quattordicesimo di una serie di diciannove solidi archimedei modificati tutti facenti parte dei solidi di Johnson.

Per quanto riguarda i 55 vertici di questo poliedro, su 45 di essi incidono una faccia pentagonale, due quadrate e una triangolare, mentre sui restanti 10 incidono una faccia decagonale, una pentagonale e una quadrata.

Formule

modifica

Considerando un rombicosidodecaedro metagirato diminuito avente come facce dei poligoni regolari aventi lato di lunghezza  , le formule per il calcolo del volume   e della superficie   risultano essere:

 
 
  1. ^ Norman W. Johnson, Convex Polyhedra with Regular Faces, in Canadian Journal of Mathematics, vol. 18, Canadian Mathematical Society, 1966, pp. 169-200, DOI:10.4153/CJM-1966-021-8. URL consultato il 14 luglio 2021.

Collegamenti esterni

modifica
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica