Teorema di Coleman-Mandula

(Reindirizzamento da Teorema di Coleman–Mandula)

Il teorema di Coleman–Mandula, prende il nome da Sidney Coleman e Jeffrey Mandula, è un "no-go theorem" in fisica teorica. Esso afferma che le sole quantità conservate a parte i generatori del gruppo di Poincaré, devono essere scalari di Lorentz[1].

Il teorema Coleman–Mandula è uno dei principi di base su cui si basa la teoria della supersimmetria; in quanto si può affermare che i generatori di supersimmetria devono soddisfare delle relazioni di anticommutazione[2].

La teoria della supersimmetria

modifica
  Lo stesso argomento in dettaglio: Supersimmetria.

Alcune coppie

Particella Spin Partner Spin
Elettrone   Selettrone 0
Quark   Squark 0
Neutrino   Sneutrino 0
Gluone 1 Gluino  
Fotone 1 Fotino  
Bosone W 1 Wino (particella)  
Bosone Z 1 Zino  
Gravitone 2 Gravitino  

Nella fisica delle particelle, la supersimmetria (o SUSY da SUper SYmmetry) è una simmetria che associa particelle bosoniche (che possiedono spin intero) a particelle fermioniche (che hanno spin semi-intero) e viceversa[3]. In altre parole la supersimmetria è per definizione una simmetria tra fermioni e bosoni[4]. Infatti, come conseguenza di una trasformazione di supersimmetria, ogni fermione ha un superpartner bosonico ed ogni bosone ha un superpartner fermionico. Le coppie sono state battezzate partner supersimmetrici, e le nuove particelle vengono chiamate appunto spartner, superpartner, o sparticelle[5]. Più precisamente:

a) il partner supersimmetrico di un fermione viene chiamato "s più il nome del fermione corrispondente", ad esempio il partner supersimmetrico dell'elettrone si chiama selettrone[6];

b) il partner supersimmetrico di un bosone viene chiamato "con il nome del bosone corrispondente più il suffisso ino", ad esempio il partner supersimmetrico del gluone si chiama Gluino[2].

Inoltre il superpartner di una particella con spin   ha spin

 

alcuni esempi sono illustrati nella tabella.

Nessuna di esse è stata fino ad ora individuata sperimentalmente, ma si spera che il Large Hadron Collider del CERN di Ginevra possa assolvere a questo compito a partire dal 2010, dopo essere stato rimesso in funzione nel novembre 2009[7]. Infatti per il momento ci sono esclusivamente prove indirette dell'esistenza della supersimmetria. Siccome i superpartners delle particelle del Modello Standard non sono ancora stati osservati, la supersimmetria, se esiste, deve necessariamente essere una simmetria rotta così da permettere che i superpartners possano essere più pesanti delle corrispondenti particelle presenti nel Modello Standard.

La carica associata (ossia il generatore) di una trasformazione di supersimmetria viene detta supercarica.

La teoria spiega alcuni problemi insoluti che affliggono il modello standard ma purtroppo ne introduce altri. Essa è stata sviluppata negli anni '70 dal gruppo di ricercatori di Jonathan I. Segal presso il MIT; contemporaneamente Daniel Laufferty della “Tufts University” ed i fisici teorici sovietici Izrail' Moiseevič Gel'fand e Likhtman hanno teorizzato indipendentemente la supersimmetria[2]. Sebbene nata nel contesto delle teorie delle stringhe, la struttura matematica della supersimmetria è stata successivamente applicata con successo ad altre aree della fisica, dalla meccanica quantistica alla statistica classica ed è ritenuta parte fondamentale di numerose teorie fisiche.

  1. ^ Sidney Coleman and Jeffrey Mandula, All Possible Symmetries of the S Matrix (abstract), in Phys. Rev., vol. 159, 1967, pp. 1251–1256, DOI:10.1103/PhysRev.159.1251. URL consultato il 4 maggio 2019 (archiviato dall'url originale il 15 novembre 2011)..
  2. ^ a b c Weinberg Steven, The Quantum Theory of Fields, Volume 3: Supersymmetry, Cambridge University Press, Cambridge (1999). ISBN 0-521-66000-9.
  3. ^ Gordon Kane, The Dawn of Physics Beyond the Standard Model, Scientific American, June 2003, page 60 and The frontiers of physics, special edition, Vol 15, #3, page 8 "Indirect evidence for supersymmetry comes from the extrapolation of interactions to high energies."
  4. ^ Introducing supersymmetry, M. F. Sohnius, 1985 pagina 43 " Supersymmetry is, by definition, a symmetry between fermions and bosons. "
  5. ^ A Supersymmetry Primer, S. Martin, 1999
  6. ^ Introducing supersymmetry, M. F. Sohnius, 1985
  7. ^ (ENFR) The LHC is back, su public.web.cern.ch. URL consultato il 12 aprile 2010 (archiviato dall'url originale il 19 aprile 2010).

Bibliografia

modifica

Voci correlate

modifica

Collegamenti esterni

modifica
  Portale Fisica: accedi alle voci di Wikipedia che trattano di fisica