Numero primo di Sophie Germain
Un numero primo di Sophie Germain è un numero primo tale che è anch'esso un numero primo. Il numero è invece chiamato primo sicuro. Prendono nome dalla matematica francese Sophie Germain, che all'inizio del XIX secolo li usò per dimostrare un caso particolare dell'ultimo teorema di Fermat.
Prime proprietà
modificaI numeri primi di Sophie Germain minori di 104 sono:
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901, 1931, 1973, 2003, 2039, 2063, 2069, 2129, 2141, 2273, 2339, 2351, 2393, 2399, 2459, 2543, 2549, 2693, 2699, 2741, 2753, 2819, 2903, 2939, 2963, 2969, 3023, 3299, 3329, 3359, 3389, 3413, 3449, 3491, 3539, 3593, 3623, 3761, 3779, 3803, 3821, 3851, 3863, 3911, 4019, 4073, 4211, 4271, 4349, 4373, 4391, 4409, 4481, 4733, 4793, 4871, 4919, 4943, 5003, 5039, 5051, 5081, 5171, 5231, 5279, 5303, 5333, 5399, 5441, 5501, 5639, 5711, 5741, 5849, 5903, 6053, 6101, 6113, 6131, 6173, 6263, 6269, 6323, 6329, 6449, 6491, 6521, 6551, 6563, 6581, 6761, 6899, 6983, 7043, 7079, 7103, 7121, 7151, 7193, 7211, 7349, 7433, 7541, 7643, 7649, 7691, 7823, 7841, 7883, 7901, 8069, 8093, 8111, 8243, 8273, 8513, 8663, 8693, 8741, 8951, 8969, 9029, 9059, 9221, 9293, 9371, 9419, 9473, 9479, 9539, 9629, 9689, 9791.
A marzo 2016, il più grande primo di Sophie Germain conosciuto è , un numero di 388342 cifre decimali, scoperto nel febbraio 2016 da James Scott Brown attraverso il progetto di calcolo distribuito PrimeGrid.[1]
I numeri primi di Sophie Germain devono soddisfare diverse restrizioni modulari: ad esempio, se è congruo ad 1 modulo 3, allora , ovvero 3 divide . Di conseguenza, ogni numero primo di Sophie Germain (ad eccezione di 3) sono congrui a 2 modulo 3. Partendo da un qualsiasi primo al posto di 3, è possibile con lo stesso ragionamento eliminare una classe di resto modulo : ad esempio, se è congruo a 2 modulo 5 (e diverso da 2) allora non è un primo di Sophie Germain.
I primi di Sophie Germain sono collegati con i primi di Mersenne. Eulero dimostrò che, se un primo di Sophie Germain è della forma , allora divide , che quindi non è un numero primo.
Distribuzione
modificaNon è noto se vi siano infiniti numeri primi di Sophie Germain. Usando tecniche di crivello, si può congetturare che il numero di primi di Sophie Germain minori di sia asintotico a
dove ( varia tra i numeri primi)
Relazione con l'ultimo teorema di Fermat
modificaAttorno al 1825, Sophie Germain dimostrò che, se e sono due numeri primi tali che
- non è una -esima potenza modulo , e
- se sono numeri interi, implica che divide , o ,
allora il "primo caso" dell'ultimo teorema di Fermat vale per , ovvero se , allora divide almeno uno tra , e .
In particolare, se , allora la prima condizione è sempre soddisfatta (purché ) grazie al piccolo teorema di Fermat (in quanto può essere congruo solo a o a modulo . Allo stesso modo, , e sono uguali a o a modulo ; di conseguenza,
(per interi ) e questo può avvenire solo se . Questo argomento, inoltre, può essere usato indipendentemente dal teorema generale per dimostrare direttamente il primo caso quando è un primo di Sophie Germain.
Varianti di questo ragionamento portarono poi Legendre a dimostrare che verifica il primo caso dell'ultimo teorema di Fermat nel caso in cui uno tra , , , e sia un numero primo.
Note
modifica- ^ (EN) Chris Caldwell, Sophie Germain (p), su The Prime Pages. URL consultato il 19 gennaio 2015.
Bibliografia
modifica- Paulo Ribenboim, Lecture IV - The Naïve Approach, in 13 Lectures on Fermat's Last Theorem, New York, Springer-Verlag, 1979, ISBN 978-0-387-90432-0.
- Victor Shoup, 5.5.5 - Sophie Germain primes, in A Computational Introduction to Number Theory and Algebra, Cambridge University Press, 2009, pp. 123–124, ISBN 978-0-521-51644-0.
Collegamenti esterni
modifica- (EN) Chris Caldwell, Sophie Germain prime, su The Prime Pages. URL consultato il 19 gennaio 2015.
- (EN) Chris Caldwell, Sophie Germain (p), su The Prime Pages. URL consultato il 19 gennaio 2015.
- (EN) Sequenza A005384, su On-Line Encyclopedia of Integer Sequences, The OEIS Foundation.