Modello grafico

modello probabilistico nel quale la struttura delle dipendenze condizionate fra variabili vengono espresse attraverso un grafo
(Reindirizzamento da Probabilistic graphical model)

Un modello grafico o modello grafico probabilistico (probabilistic graphical model, PGM) o modello strutturale probabilistico è un modello probabilistico per il quale un grafo esprime la struttura di dipendenza condizionata fra variabili casuali. Tali modelli sono comunemente utilizzati in teoria della probabilità, statistica - soprattutto in statistica Bayesiana - e nell'apprendimento automatico.

Tipi di modelli grafici

modifica

Generalmente, un modello grafico probabilistico usa una rappresentazione a grafo come base per codificare una distribuzione su uno spazio multi-dimensionale, un grafo che costituisce una rappresentazione compatta o fattorizzata di un insieme di relazioni di indipendenza valide per la specifica distribuzione. Vengono comunemente usati due modalità di rappresentazione grafica delle distribuzioni, ovvero quella delle reti bayesiane (grafi orientati) e quella dei campi casuali di Markov (grafi non orientati). Entrambe le famiglie comprendono proprietà di fattorizzazione e relazioni di indipendenza, ma si differenziano nell'insieme di relazioni di indipendenza che possono codificare e la fattorizzazione della distribuzione che essi inducono.[1]

Altri tipi

modifica
  • Rete di dipendenze nella quale sono ammessi i cicli
  • Tree-augmented classifier o TAN model
  • Un factor graph è un grafo bipartito non orientato che connette variabili e fattori. Ogni fattore rappresenta una funzione definita sulle variabili alle quali è connesso. Questa è una rappresentazione utile a capire e implementare la belief propagation.
  • Un clique tree o junction tree è un albero di cricche usato nell'algoritmo di inferenza per junction tree.
  • Un chain graph è un grafo che può avere archi orientati e non, ma è privo di cicli orientati (quindi se si parte da qualunque nodo e ci si sposta lungo il grafo rispettando le direzioni degli archi, non si può tornare nel nodo di partenza se si è percorso un arco orientato). Sia i grafi aciclici orientati sia i grafi non orientati sono casi particolari di chain graph, che possono fornire, quindi, un modo per unificare e generalizzare le reti bayesiane e quelle markoviane.[2]
  • Un ancestral graph costituisce un'ulteriore estensione, con archi orientati, bi-orientati e non-orientati.[3]
  • Rete bayesiana dinamica
  • Modelli random field (campi casuali):
  • Una restricted Boltzmann machine è un modello generativo bipartito specificato su un grafo non orientato.
  1. ^ Daphne Koller e Nir Friedman, Probabilistic Graphical Models, MIT Press, 2009, pp. 1208, ISBN 978-0-262-01319-2 (archiviato dall'url originale il 27 aprile 2014).
  2. ^ Morten Frydenberg, The Chain Graph Markov Property, in Scandinavian Journal of Statistics, vol. 17, n. 4, 1990, pp. 333–353, JSTOR 4616181, MR 1096723.
  3. ^ Thomas Richardson e Peter Spirtes, Ancestral graph Markov models, in Annals of Statistics, vol. 30, n. 4, 2002, pp. 962–1030, DOI:10.1214/aos/1031689015, MR 1926166, Zbl 1033.60008.

Collegamenti esterni

modifica