L'appellativo "invariante" deriva dal fatto che applicando alla conica una traslazione qualsiasi e/o una rotazione qualsiasi, questi numeri non cambiano.
Gli appellativi "cubico", "quadratico" e "lineare" derivano dal fatto che moltiplicando entrambi i membri dell'equazione della conica per un numero reale non nullo p, gli invarianti risultano moltiplicati rispettivamente per , e .
Data l'equazione della conica , detti , e gli invarianti di tale conica e detti , e gli invarianti della conica di equazione con , si hanno le seguenti identità:
per l'iperbole: deve avere centro nell'origine degli assi e i fuochi devono appartenere all'asse o all'asse .
In generale un'equazione del tipo:, fornisce una conica rototraslata rispetto all'origine degli assi: bisogna quindi ruotare la conica (1º passo) e poi traslarla fino a portare il centro o il vertice nell'origine (2º passo).
1º passo: la rotazione della conica si ottiene tramite l'annullamento del coefficiente di , cioè .
Dopo questa operazione, la conica si riduce nella forma , in cui e si ottengono nel seguente modo: bisogna diagonalizzare la matrice
e sono i coefficienti dei termini quadratici dell'equazione della conica. Nel caso della parabola, o o sarà nullo, in quanto nell'equazione è presente un solo termine quadratico.
2º passo: con la traslazione, se la conica è a centro (un'ellisse o un'iperbole), si ottiene un'equazione del tipo: in cui e sono i valori ricavati con il passo precedente, mentre si ottiene nella maniera seguente:
.
Se la conica è una parabola, si ottiene un'equazione del tipo: in cui: è l'autovalore non nullo e
con invariante cubico.
Notiamo esplicitamente che per le parabole:
È data la conica di equazione ; studiando i determinanti di e scopriamo che è un'ellisse. Controllando le derivate parziali dell'equazione, mettendole a sistema ed uguagliandole a 0, otteniamo l'attuale centro dell'ellisse:
Poiché il centro si trova già nell'origine non ci sarà bisogno di traslare la conica. Per ottenere la forma canonica dobbiamo ruotare la conica diagonalizzando ; gli autovalori della forma quadratica sono 5 e 10 e gli autovettori rispettivi sono (1,2) e (-2,1). Incolonnando questi autovettori opportunamente normalizzati in una matrice otteniamo una matrice di rotazione (destrorsa, poiché ):
Poiché , si può scrivere:
Andando a sostituire nell'equazione originale della conica otteniamo la nuova equazione , che è la stessa conica di partenza ruotata però in maniera da avere i fuochi (in questo caso) sull'asse . La forma canonica della nostra conica è , con fuochi
È data la conica di equazione ; studiando i determinanti di e scopriamo che è un'iperbole. Controllando le derivate parziali dell'equazione, mettendole a sistema ed uguagliandole a 0, otteniamo l'attuale centro dell'iperbole:
Gli asintoti sono le rette passanti per parallele a quelle ottenute scomponendo la forma quadratica della conica:
Per ottenere la forma canonica si può impiegare la formula
,
con autovalori di ed è:
I nuovi asintoti sono le due rette aventi forma e passanti per l'origine:
I fuochi della forma canonica hanno forma e sono dunque:
È data la conica di equazione ; studiando e scopriamo che è una parabola. Diagonalizzando troviamo come autovalori 0 e 2 e come autovettori rispettivi (1,-1) e (1,1). Per trovare il vertice intersechiamo la parabola con una retta ortogonale all'asse della conica: poiché l'asse della parabola è una retta passante per il vertice di direzione parallela all'autovettore relativo all'autovalore nullo (in questo caso (1,-1)), una retta ad essa parallela è senz'altro , quindi una retta ad essa ortogonale è . Dall'intersezione si trovano i punti (0,0) e (2,2); il loro punto medio (1,1) si trova sull'asse. L'asse è quindi la retta parallela a passante per ed è . Intersecando ora l'asse con la parabola troviamo il vertice: . Traslando in modo che sia centrato sull'origine:
l'equazione diventa:
La matrice è matrice di rotazione composta dai due autovettori normalizzati (autoversori):
Poiché , si può scrivere:
Andando a sostituire otteniamo la forma canonica , con fuoco e direttrice