Dimensione
Formula
Espressione
Valore, nel SI approssimata
Versione di Lorentz–Heaviside [ 1]
Versione gaussiana [ 2] [ 3] [ 4] [ 5]
Valore nel SI
Lorentz-Heaviside
Valore nel SI
Gaussiana
Proprietà meccanico-fisiche
Area di Planck
Area
[
L
]
2
{\displaystyle \left[L\right]^{2}}
l
P
2
=
4
π
ℏ
G
c
3
{\displaystyle l_{\text{P}}^{2}={\frac {4\pi \hbar G}{c^{3}}}}
l
P
2
=
ℏ
G
c
3
{\displaystyle l_{\text{P}}^{2}={\frac {\hbar G}{c^{3}}}}
3
,
282688
⋅
10
−
69
m
2
{\displaystyle 3,282688\cdot 10^{-69}\;m^{2}}
2
,
612280
⋅
10
−
70
m
2
{\displaystyle 2,612280\cdot 10^{-70}\;m^{2}}
Volume di Planck
Volume
[
L
]
3
{\displaystyle \left[L\right]^{3}}
l
P
3
=
64
π
3
ℏ
3
G
3
c
9
{\displaystyle l_{\text{P}}^{3}={\sqrt {\frac {64\pi ^{3}\hbar ^{3}G^{3}}{c^{9}}}}}
l
P
3
=
(
ℏ
G
c
3
)
3
2
=
ℏ
3
G
3
c
9
{\displaystyle l_{\text{P}}^{3}=\left({\frac {\hbar G}{c^{3}}}\right)^{\frac {3}{2}}={\sqrt {\frac {\hbar ^{3}G^{3}}{c^{9}}}}}
1
,
880808
⋅
10
−
103
m
3
{\displaystyle 1,880808\cdot 10^{-103}\;m^{3}}
4
,
222111
⋅
10
−
105
m
3
{\displaystyle 4,222111\cdot 10^{-105}\;m^{3}}
Velocità di Planck
Velocità
[
L
]
[
T
]
−
1
{\displaystyle \left[L\right]\left[T\right]^{-1}}
v
P
=
l
P
t
P
=
c
{\displaystyle v_{\text{P}}={\frac {l_{\text{P}}}{t_{\text{P}}}}=c}
299.792.458
m
s
{\displaystyle 299.792.458\;{\frac {m}{s}}}
Planck Angolare
Radiante
[
L
]
[
L
]
−
1
→
{\displaystyle \left[L\right]\left[L\right]^{-1}\to }
adimensionale
θ
P
=
l
P
l
P
=
1
{\displaystyle \theta _{\text{P}}={\frac {l_{\text{P}}}{l_{\text{P}}}}=1}
1
r
a
d
{\displaystyle 1\;\mathrm {rad} }
Planck steradiante
Angolo solido
[
L
]
2
[
L
]
−
2
→
{\displaystyle \left[L\right]^{2}\left[L\right]^{-2}\to }
adimensionale
θ
P
2
=
l
P
2
l
P
2
=
1
{\displaystyle \theta _{\text{P}}^{2}={\frac {l_{\text{P}}^{2}}{l_{\text{P}}^{2}}}=1}
1
s
r
{\displaystyle 1\;\mathrm {sr} }
Quantità di moto di Planck
Quantità di moto
[
L
]
[
M
]
[
T
]
−
1
{\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-1}}
m
P
c
=
ℏ
l
P
=
ℏ
c
3
4
π
G
{\displaystyle m_{\text{P}}c={\frac {\hbar }{l_{\text{P}}}}={\sqrt {\frac {\hbar c^{3}}{4\pi G}}}}
m
P
c
=
ℏ
l
P
=
ℏ
c
3
G
{\displaystyle m_{\text{P}}c={\frac {\hbar }{l_{\text{P}}}}={\sqrt {\frac {\hbar c^{3}}{G}}}}
1
,
840608
N
⋅
s
{\displaystyle 1,840608\;\mathrm {N} \cdot s}
6
,
524785
k
g
⋅
m
s
{\displaystyle 6,524785\;kg\cdot {\frac {m}{s}}}
Energia di Planck
Energia
[
M
]
[
L
]
2
[
T
]
−
2
{\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-2}}
E
P
=
m
P
v
P
2
=
ℏ
t
P
=
ℏ
c
5
4
π
G
{\displaystyle E_{\text{P}}=m_{\text{P}}v_{\text{P}}^{2}={\frac {\hbar }{t_{\text{P}}}}={\sqrt {\frac {\hbar c^{5}}{4\pi G}}}}
E
P
=
m
P
c
2
=
ℏ
t
P
=
ℏ
c
5
G
{\displaystyle E_{\text{P}}={{m}_{\text{P}}}{{c}^{2}}={\frac {\hbar }{{t}_{\text{P}}}}={\sqrt {\frac {\hbar {{c}^{5}}}{G}}}}
5.518004
⋅
10
8
J
{\displaystyle 5.518004\cdot 10^{8}\;\mathrm {J} }
153
,
278
k
W
⋅
h
{\displaystyle 153,278\;k\mathrm {W} \cdot h}
3
,
444067
⋅
10
18
G
e
V
{\displaystyle 3,444067\cdot 10^{18}Ge\mathrm {V} }
1
,
956081
⋅
10
9
J
{\displaystyle 1,956081\cdot 10^{9}\mathrm {J} }
543
,
356
k
W
⋅
h
{\displaystyle 543,356\;k\mathrm {W} \cdot h}
1
,
220890
⋅
10
28
e
V
{\displaystyle 1,220890\cdot 10^{28}e\mathrm {V} }
Forza di Planck
Forza
[
M
]
[
L
]
[
T
]
−
2
{\displaystyle \left[M\right]\left[L\right]\left[T\right]^{-2}}
F
P
=
m
P
a
P
=
m
P
c
t
P
=
c
4
4
π
G
{\displaystyle F_{\text{P}}=m_{\text{P}}a_{\text{P}}={\frac {m_{\text{P}}c}{t_{\text{P}}}}={\frac {c^{4}}{4\pi G}}}
F
P
=
E
P
l
P
=
ℏ
l
P
t
P
=
c
4
G
{\displaystyle {{F}_{\text{P}}}={\frac {{E}_{\text{P}}}{{l}_{\text{P}}}}={\frac {\hbar }{{{l}_{\text{P}}}{{t}_{\text{P}}}}}={\frac {{c}^{4}}{G}}}
9
,
630908
⋅
10
42
N
{\displaystyle 9,630908\cdot 10^{42}\;\mathrm {N} }
1
,
210256
⋅
10
44
N
{\displaystyle 1,210256\cdot 10^{44}\;\mathrm {N} }
Potenza di Planck
Potenza
[
M
]
[
L
]
2
[
T
]
−
3
{\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-3}}
P
P
=
E
P
t
P
=
ℏ
t
P
2
=
c
5
4
π
G
{\displaystyle P_{\text{P}}={\frac {E_{\text{P}}}{t_{\text{P}}}}={\frac {\hbar }{t_{\text{P}}^{2}}}={\frac {c^{5}}{4\pi G}}}
P
P
=
E
P
t
P
=
c
5
G
{\displaystyle P_{\text{P}}={\frac {E_{\text{P}}}{t_{\text{P}}}}={\frac {c^{5}}{G}}}
2
,
887274
⋅
10
51
W
{\displaystyle 2,887274\cdot 10^{51}\;\mathrm {W} }
3
,
628255
⋅
10
52
W
{\displaystyle 3,628255\cdot 10^{52}\;\mathrm {W} }
Intensità radiante di Planck
Intensità angolare
[
L
]
2
[
M
]
[
T
]
−
3
{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-3}}
P
P
θ
P
2
=
c
5
4
π
G
{\displaystyle {\frac {P_{\text{P}}}{\theta _{\text{P}}^{2}}}={\frac {c^{5}}{4\pi G}}}
ι
P
=
P
P
θ
P
2
=
c
5
G
{\displaystyle \iota _{\text{P}}={\frac {P_{\text{P}}}{\theta _{\text{P}}^{2}}}={\frac {c^{5}}{G}}}
2
,
887274
⋅
10
51
W
s
r
{\displaystyle 2,887274\cdot 10^{51}\;{\frac {\mathrm {W} }{\mathrm {sr} }}}
3
,
628255
⋅
10
52
W
s
r
{\displaystyle 3,628255\cdot 10^{52}\;{\frac {\mathrm {W} }{\mathrm {sr} }}}
Intensità di Planck
Intensità
[
M
]
[
T
]
−
3
{\displaystyle \left[M\right]\left[T\right]^{-3}}
i
P
=
P
P
l
P
2
=
c
8
16
π
2
ℏ
G
2
{\displaystyle i_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{8}}{16\pi ^{2}\hbar G^{2}}}}
i
P
=
ρ
P
E
c
=
P
P
l
P
2
=
c
8
ℏ
G
2
{\displaystyle i_{\text{P}}=\rho _{\text{P}}^{E}c={\frac {P_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{8}}{\hbar G^{2}}}}
8
,
795455
⋅
10
119
W
m
2
{\displaystyle 8,795455\cdot 10^{119}\;{\frac {\mathrm {W} }{m^{2}}}}
1
,
388923
⋅
10
122
W
m
2
{\displaystyle 1,388923\cdot 10^{122}\;{\frac {\mathrm {W} }{m^{2}}}}
Densità di Planck
Densità
[
M
]
[
L
]
−
3
{\displaystyle \left[M\right]\left[L\right]^{-3}}
ρ
P
=
m
P
l
P
3
=
ℏ
t
P
l
P
5
=
c
5
16
π
2
ℏ
G
2
{\displaystyle \rho _{\text{P}}={\frac {m_{\text{P}}}{l_{\text{P}}^{3}}}={\frac {\hbar \,t_{\text{P}}}{l_{\text{P}}^{5}}}={\frac {c^{5}}{16\pi ^{2}\hbar G^{2}}}}
ρ
P
=
m
P
l
P
3
=
c
5
ℏ
G
2
{\displaystyle \rho _{\text{P}}={\frac {m_{\text{P}}}{l_{\text{P}}^{3}}}={\frac {c^{5}}{\hbar G^{2}}}}
3
,
264346
⋅
10
94
k
g
m
3
{\displaystyle 3,264346\cdot 10^{94}\;{\frac {kg}{m^{3}}}}
5
,
154849
⋅
10
96
k
g
m
3
{\displaystyle 5,154849\cdot 10^{96}\;{\frac {kg}{m^{3}}}}
Densità energetica di Planck
Densità di energia
[
L
]
−
1
[
M
]
[
T
]
−
2
{\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}}
u
P
=
E
P
l
P
3
=
c
7
16
π
2
ℏ
G
2
{\displaystyle u_{\text{P}}={\frac {E_{\text{P}}}{l_{\text{P}}^{3}}}={\frac {c^{7}}{16\pi ^{2}\hbar G^{2}}}}
u
P
=
E
P
l
P
3
=
c
7
ℏ
G
2
{\displaystyle u_{\text{P}}={\frac {E_{\text{P}}}{l_{\text{P}}^{3}}}={\frac {c^{7}}{\hbar G^{2}}}}
2
,
933848
⋅
10
111
J
m
3
{\displaystyle 2,933848\cdot 10^{111}\;{\frac {\mathrm {J} }{m^{3}}}}
4
,
632947
⋅
10
113
J
m
3
{\displaystyle 4,632947\cdot 10^{113}\;{\frac {\mathrm {J} }{m^{3}}}}
Frequenza angolare di Planck
Frequenza
[
T
]
−
1
{\displaystyle \left[T\right]^{-1}}
ω
P
=
θ
P
t
P
=
c
5
4
π
ℏ
G
{\displaystyle \omega _{\text{P}}={\frac {\theta _{P}}{t_{\text{P}}}}={\sqrt {\frac {c^{5}}{4\pi \hbar G}}}}
ω
P
=
θ
P
t
P
=
c
5
ℏ
G
{\displaystyle \omega _{P}={\frac {\theta _{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {c^{5}}{\hbar G}}}\;}
5
,
232458
⋅
10
42
r
a
d
s
{\displaystyle 5,232458\cdot 10^{42}{\frac {\mathrm {rad} }{s}}}
1
,
854858
⋅
10
43
r
a
d
s
{\displaystyle 1,854858\cdot 10^{43}{\frac {\mathrm {rad} }{s}}}
Accelerazione angolare di Planck
Accelerazione angolare
[
T
]
−
2
{\displaystyle \left[T\right]^{-2}}
ω
P
t
P
=
t
P
−
2
=
c
5
4
π
ℏ
G
{\displaystyle {\frac {\omega _{\text{P}}}{t_{\text{P}}}}=t_{\text{P}}^{-2}={\frac {c^{5}}{4\pi \hbar G}}}
ω
P
t
P
=
t
P
−
2
=
c
5
ℏ
G
{\displaystyle {\frac {\omega _{\text{P}}}{t_{\text{P}}}}=t_{\text{P}}^{-2}={\frac {c^{5}}{\hbar G}}}
2
,
737862
⋅
10
85
r
a
d
s
2
{\displaystyle 2,737862\cdot 10^{85}\;{\frac {\mathrm {rad} }{s^{2}}}}
3
,
440498
⋅
10
86
r
a
d
s
2
{\displaystyle 3,440498\cdot 10^{86}\;{\frac {\mathrm {rad} }{s^{2}}}}
Accelerazione di Planck
Accelerazione
[
L
]
[
T
]
−
2
{\displaystyle \left[L\right]\left[T\right]^{-2}}
a
P
=
v
P
t
P
=
c
7
4
π
ℏ
G
{\displaystyle a_{\text{P}}={\frac {v_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {c^{7}}{4\pi \hbar G}}}}
a
P
=
c
t
P
=
c
7
ℏ
G
{\displaystyle a_{\text{P}}={\frac {c}{t_{\text{P}}}}={\sqrt {\frac {c^{7}}{\hbar G}}}}
1
,
568652
⋅
10
51
m
s
2
{\displaystyle 1,568652\cdot 10^{51}\;{\frac {m}{s^{2}}}}
5
,
560726
⋅
10
51
m
s
2
{\displaystyle 5,560726\cdot 10^{51}\;{\frac {m}{s^{2}}}}
Momento inerziale di Planck
Momento di inerzia
[
L
]
2
[
M
]
{\displaystyle \left[L\right]^{2}\left[M\right]}
m
P
l
P
2
=
4
π
ℏ
3
G
c
5
{\displaystyle m_{\text{P}}l_{\text{P}}^{2}={\sqrt {\frac {4\pi \hbar ^{3}G}{c^{5}}}}}
m
P
l
P
2
=
ℏ
3
G
c
5
{\displaystyle m_{\text{P}}l_{\text{P}}^{2}={\sqrt {\frac {\hbar ^{3}G}{c^{5}}}}}
2
,
01544
⋅
10
−
77
k
g
⋅
m
2
{\displaystyle 2,01544\cdot 10^{-77}kg\cdot m^{2}}
5
,
68546
⋅
10
−
78
k
g
⋅
m
2
{\displaystyle 5,68546\cdot 10^{-78}kg\cdot m^{2}}
Momento angolare di Planck
Momento angolare
[
L
]
2
[
M
]
[
T
]
−
1
{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-1}}
ℏ
P
=
m
P
l
P
2
ω
P
=
l
P
m
P
c
=
E
P
t
P
=
ℏ
{\displaystyle \hbar _{\text{P}}=m_{\text{P}}l_{\text{P}}^{2}\omega _{\text{P}}=l_{\text{P}}m_{\text{P}}c=E_{\text{P}}t_{\text{P}}=\hbar }
1.054571817
…
⋅
10
−
34
J
s
{\displaystyle 1.054571817\ldots \cdot 10^{-34}\;\mathrm {J} s}
Coppia di Planck
Torque
[
L
]
2
[
M
]
[
T
]
−
2
{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}}
τ
P
=
F
P
l
P
=
ℏ
P
t
P
=
ℏ
c
5
4
π
G
{\displaystyle \tau _{\text{P}}=F_{\text{P}}l_{\text{P}}={\frac {\hbar _{P}}{t_{\text{P}}}}={\sqrt {\frac {\hbar c^{5}}{4\pi G}}}}
τ
P
=
F
P
l
P
=
ℏ
P
t
P
=
ℏ
c
5
G
{\displaystyle \tau _{\text{P}}=F_{\text{P}}l_{\text{P}}={\frac {\hbar _{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {\hbar c^{5}}{G}}}}
5
,
518004
⋅
10
8
N
⋅
m
{\displaystyle 5,518004\cdot 10^{8}\mathrm {N} \cdot m}
1
,
956081
⋅
10
9
N
⋅
m
{\displaystyle 1,956081\cdot 10^{9}\mathrm {N} \cdot m}
Pressione di Planck
Pressione
[
M
]
[
L
]
−
1
[
T
]
−
2
{\displaystyle \left[M\right]\left[L\right]^{-1}\left[T\right]^{-2}}
p
P
=
F
P
l
P
2
=
ℏ
l
P
3
t
P
=
c
7
16
π
2
ℏ
G
2
{\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {\hbar }{l_{\text{P}}^{3}t_{\text{P}}}}={\frac {c^{7}}{16\pi ^{2}\hbar G^{2}}}}
p
P
=
F
P
l
P
2
=
c
7
ℏ
G
2
{\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{\hbar G^{2}}}\;}
2
,
933848
⋅
10
111
P
a
{\displaystyle 2,933848\cdot 10^{111}\mathrm {Pa} }
4
,
632947
⋅
10
113
P
a
{\displaystyle 4,632947\cdot 10^{113}\mathrm {Pa} }
Tensione superficiale di Planck
Tensione superficiale
[
M
]
[
T
]
−
2
{\displaystyle \left[M\right]\left[T\right]^{-2}}
F
P
l
P
=
c
11
64
π
3
ℏ
G
3
{\displaystyle {\frac {F_{\text{P}}}{l_{\text{P}}}}={\sqrt {\frac {c^{11}}{64\pi ^{3}\hbar G^{3}}}}}
F
P
l
P
=
c
11
ℏ
G
3
{\displaystyle {\frac {F_{\text{P}}}{l_{\text{P}}}}={\sqrt {\frac {c^{11}}{\hbar G^{3}}}}}
1
,
680941
⋅
10
77
N
m
{\displaystyle 1,680941\cdot 10^{77}{\frac {\mathrm {N} }{m}}}
7
,
488024
⋅
10
78
N
m
{\displaystyle 7,488024\cdot 10^{78}{\frac {\mathrm {N} }{m}}}
Forza superficiale universale di Planck
Forza superficiale universale
[
L
]
−
1
[
M
]
[
T
]
−
2
{\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}}
p
P
=
F
P
l
P
2
=
c
7
16
π
2
ℏ
G
2
{\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{16\pi ^{2}\hbar G^{2}}}}
p
P
=
F
P
l
P
2
=
c
7
ℏ
G
2
{\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{\hbar G^{2}}}}
2
,
933848
⋅
10
111
P
a
{\displaystyle 2,933848\cdot 10^{111}\mathrm {Pa} }
4
,
632947
⋅
10
113
P
a
{\displaystyle 4,632947\cdot 10^{113}\mathrm {Pa} }
Durezza di indentazione di Planck
Durezza di indentazione
[
L
]
−
1
[
M
]
[
T
]
−
2
{\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}}
p
P
=
F
P
l
P
2
=
c
7
16
π
2
ℏ
G
2
{\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{16\pi ^{2}\hbar G^{2}}}}
p
P
=
F
P
l
P
2
=
c
7
ℏ
G
2
{\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{\hbar G^{2}}}}
2
,
933848
⋅
10
111
P
a
{\displaystyle 2,933848\cdot 10^{111}\mathrm {Pa} }
4
,
632947
⋅
10
113
P
a
{\displaystyle 4,632947\cdot 10^{113}\mathrm {Pa} }
Durezza assoluta di Planck
Durezza Assoluta
[
L
]
−
1
[
M
]
[
T
]
−
2
{\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}}
a
⊕
F
P
=
9
,
80665
4
π
G
c
4
{\displaystyle {\frac {a_{\oplus }}{F_{\text{P}}}}={\frac {_{9,80665}\,4\pi G}{c^{4}}}}
a
⊕
F
P
=
9
,
80665
G
c
4
{\displaystyle {\frac {a_{\oplus }}{F_{\text{P}}}}={\frac {_{9,80665}G}{c^{4}}}}
1
,
01825
⋅
10
−
42
k
g
⋅
f
{\displaystyle 1,01825\cdot 10^{-42}kg\cdot f}
8
,
10296
⋅
10
−
44
k
g
⋅
f
{\displaystyle 8,10296\cdot 10^{-44}kg\cdot f}
Flusso di massa di Planck
Rapporto di flusso di massa
[
M
]
[
T
]
−
1
{\displaystyle \left[M\right]\left[T\right]^{-1}}
t
r
s
−
1
=
m
P
t
P
=
c
2
π
r
s
=
c
3
4
π
G
{\displaystyle {t_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{t_{\text{P}}}}={\frac {c}{2\pi r_{s}}}={\frac {c^{3}}{4\pi G}}}
t
r
s
−
1
=
m
P
t
P
=
2
c
r
s
=
c
3
G
{\displaystyle {t_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{t_{\text{P}}}}={\frac {2c}{r_{s}}}={\frac {c^{3}}{G}}}
3
,
212525
⋅
10
34
k
g
s
{\displaystyle 3,212525\cdot 10^{34}\;{\frac {kg}{s}}}
4
,
036978
⋅
10
35
k
g
s
{\displaystyle 4,036978\cdot 10^{35}\;{\frac {kg}{s}}}
Viscosità di Planck
viscosità dinamica
[
L
]
−
1
[
M
]
[
T
]
−
1
{\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-1}}
η
P
=
P
P
t
P
=
c
9
64
π
3
ℏ
G
3
{\displaystyle \eta _{\text{P}}=P_{\text{P}}t_{\text{P}}={\sqrt {\frac {c^{9}}{64\pi ^{3}\hbar G^{3}}}}}
η
P
=
P
P
t
P
=
c
9
ℏ
G
3
{\displaystyle \eta _{\text{P}}=P_{\text{P}}t_{\text{P}}={\sqrt {\frac {c^{9}}{\hbar G^{3}}}}}
5
,
607015
⋅
10
68
P
a
⋅
s
{\displaystyle 5,607015\cdot 10^{68}\mathrm {Pa} \cdot s}
2
,
497736
⋅
10
70
P
a
⋅
s
{\displaystyle 2,497736\cdot 10^{70}\mathrm {Pa} \cdot s}
Viscosità cinematica di Planck
viscosità cinematica
[
L
]
2
[
T
]
−
1
{\displaystyle \left[L\right]^{2}\left[T\right]^{-1}}
η
P
ρ
P
=
l
P
2
t
P
=
4
π
ℏ
G
c
{\displaystyle {\frac {\eta _{\text{P}}}{\rho _{\text{P}}}}={\frac {l_{\text{P}}^{2}}{t_{\text{P}}}}={\sqrt {\frac {4\pi \hbar G}{c}}}}
η
P
ρ
P
=
l
P
2
t
P
=
ℏ
G
c
{\displaystyle {\frac {\eta _{\text{P}}}{\rho _{\text{P}}}}={\frac {l_{\text{P}}^{2}}{t_{\text{P}}}}={\sqrt {\frac {\hbar G}{c}}}}
1
,
717653
⋅
10
−
27
m
2
s
{\displaystyle 1,717653\cdot 10^{-27}{\frac {m^{2}}{s}}}
4
,
845411
⋅
10
−
27
m
2
s
{\displaystyle 4,845411\cdot 10^{-27}{\frac {m^{2}}{s}}}
Portata volumetrica di Planck
Rapporto di flusso volumetrico
[
L
]
3
[
T
]
−
1
{\displaystyle \left[L\right]^{3}\left[T\right]^{-1}}
Q
P
=
l
P
3
t
P
=
l
P
2
v
P
=
4
π
ℏ
G
c
2
{\displaystyle Q_{\text{P}}={\frac {l_{\text{P}}^{3}}{t_{\text{P}}}}=l_{\text{P}}^{2}v_{\text{P}}={\frac {4\pi \hbar G}{c^{2}}}}
Q
P
=
l
P
3
t
P
=
l
P
2
v
P
=
ℏ
G
c
2
{\displaystyle Q_{\text{P}}={\frac {l_{\text{P}}^{3}}{t_{\text{P}}}}=l_{\text{P}}^{2}v_{\text{P}}={\frac {\hbar \,G}{c^{2}}}}
9
,
841252
⋅
10
−
61
m
3
s
{\displaystyle 9,841252\cdot 10^{-61}\;{\frac {m^{3}}{s}}}
7
,
831419
⋅
10
−
62
m
3
s
{\displaystyle 7,831419\cdot 10^{-62}\;{\frac {m^{3}}{s}}}
Proprietà elettromagnetiche
Corrente di Planck
Corrente elettrica
[
Q
]
[
T
]
−
1
{\displaystyle \left[Q\right]\left[T\right]^{-1}}
I
P
=
q
P
t
P
=
ε
0
c
6
4
π
G
{\displaystyle I_{\text{P}}={\frac {q_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {\varepsilon _{0}c^{6}}{4\pi G}}}}
I
P
=
q
P
t
P
=
4
π
ε
0
c
6
G
{\displaystyle I_{\text{P}}={\frac {q_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{6}}{G}}}}
2
,
768399
⋅
10
24
A
{\displaystyle 2,768399\cdot 10^{24}\;\mathrm {A} }
3
,
478873
⋅
10
25
A
{\displaystyle 3,478873\cdot 10^{25}\;\mathrm {A} }
Forza magnetomotiva di Planck
Corrente elettrica
[
Q
]
[
T
]
−
1
{\displaystyle \left[Q\right]\left[T\right]^{-1}}
I
P
=
q
P
t
P
=
ε
0
c
6
4
π
G
{\displaystyle I_{\text{P}}={\frac {q_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {\varepsilon _{0}c^{6}}{4\pi G}}}}
I
P
=
q
P
t
P
=
4
π
ε
0
c
6
G
{\displaystyle I_{\text{P}}={\frac {q_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{6}}{G}}}}
2
,
768399
⋅
10
24
A
{\displaystyle 2,768399\cdot 10^{24}\;\mathrm {A} }
3
,
478873
⋅
10
25
A
{\displaystyle 3,478873\cdot 10^{25}\;\mathrm {A} }
Tensione di Planck
Tensione
[
M
]
[
L
]
2
[
T
]
−
2
[
Q
]
−
1
{\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-2}\left[Q\right]^{-1}}
V
P
=
E
P
q
P
=
c
4
4
π
ε
0
G
{\displaystyle V_{\text{P}}={\frac {E_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{4}}{4\pi \varepsilon _{0}G}}}}
1
,
042940
⋅
10
27
V
{\displaystyle 1,042940\cdot 10^{27}\;\mathrm {V} }
Forza elettromotiva di Planck
Tensione
[
M
]
[
L
]
2
[
T
]
−
2
[
Q
]
−
1
{\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-2}\left[Q\right]^{-1}}
ϕ
P
=
V
P
=
E
P
q
P
=
c
4
4
π
ε
0
G
{\displaystyle \phi _{\text{P}}=V_{\text{P}}={\frac {E_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{4}}{4\pi \varepsilon _{0}G}}}}
1.042
940
⋅
10
27
V
{\displaystyle 1.042\;940\cdot 10^{27}\;\mathrm {V} }
Resistenza di Planck
Resistenza elettrica
[
M
]
[
L
]
2
[
T
]
−
1
[
Q
]
−
2
{\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-1}\left[Q\right]^{-2}}
Z
P
=
V
P
I
P
=
ℏ
q
P
2
=
1
ε
0
c
=
μ
0
c
=
Z
0
{\displaystyle Z_{\text{P}}={\frac {V_{\text{P}}}{I_{\text{P}}}}={\frac {\hbar }{q_{\text{P}}^{2}}}={\frac {1}{\varepsilon _{0}c}}=\mu _{0}c=Z_{0}}
Z
P
=
V
P
I
P
=
1
4
π
ε
0
c
=
Z
0
4
π
{\displaystyle Z_{\text{P}}={\frac {V_{\text{P}}}{I_{\text{P}}}}={\frac {1}{4\pi \varepsilon _{0}c}}={\frac {Z_{0}}{4\pi }}}
376
,
730
Ω
{\displaystyle 376,730\;\Omega }
29
,
9792458
Ω
{\displaystyle 29,9792458\;\Omega }
Conduttanza di Planck
Conduttanza elettrica
[
L
]
−
2
[
M
]
−
1
[
T
]
[
Q
]
2
{\displaystyle \left[L\right]^{-2}\left[M\right]^{-1}\left[T\right]\left[Q\right]^{2}}
G
P
=
1
R
P
=
ε
0
c
=
1
Z
0
{\displaystyle G_{\text{P}}={\frac {1}{R_{\text{P}}}}=\varepsilon _{0}c={\frac {1}{Z_{0}}}}
G
P
=
1
R
P
=
4
π
ε
0
c
=
4
π
Z
0
{\displaystyle G_{\text{P}}={\frac {1}{R_{\text{P}}}}=4\pi \varepsilon _{0}c={\frac {4\pi }{Z_{0}}}}
0
,
002654
S
{\displaystyle 0,002654\;\mathrm {S} }
0
,
0333564095
S
{\displaystyle 0,0333564095\;\mathrm {S} }
Capacità elettrica di Planck
Capacità elettrica
[
L
]
−
2
[
M
]
−
1
[
T
]
2
[
Q
]
2
{\displaystyle \left[L\right]^{-2}\left[M\right]^{-1}\left[T\right]^{2}\left[Q\right]^{2}}
C
P
=
q
P
V
P
=
l
P
k
e
=
4
π
ε
0
2
ℏ
G
c
3
{\displaystyle {{C}_{\text{P}}}={\frac {{q}_{\text{P}}}{{V}_{\text{P}}}}={\frac {{l}_{P}}{{k}_{e}}}={\sqrt {\frac {4{\pi }\varepsilon _{0}^{2}\hbar G}{{c}^{3}}}}}
C
P
=
q
P
V
P
=
l
P
k
e
=
16
π
2
ε
0
2
ℏ
G
c
3
{\displaystyle {{C}_{\text{P}}}={\frac {{q}_{\text{P}}}{{V}_{\text{P}}}}={\frac {{l}_{P}}{{k}_{e}}}={\sqrt {\frac {16{{\pi }^{2}}\varepsilon _{0}^{2}\hbar G}{{c}^{3}}}}}
5
,
072985
⋅
10
−
46
F
{\displaystyle 5,072985\cdot 10^{-46}\;\mathrm {F} }
1
,
798326
⋅
10
−
45
F
{\displaystyle 1,798326\cdot 10^{-45}\;\mathrm {F} }
Permittività di Planck
(Costante elettrica)
Permittività elettrica
[
L
]
−
3
[
M
]
−
1
[
T
]
2
[
Q
]
2
{\displaystyle \left[L\right]^{-3}\left[M\right]^{-1}\left[T\right]^{2}\left[Q\right]^{2}}
ε
P
=
C
P
l
P
=
q
P
V
P
l
P
=
F
P
V
P
2
=
ε
0
{\displaystyle \varepsilon _{\text{P}}={\frac {C_{\text{P}}}{l_{\text{P}}}}={\frac {q_{\text{P}}}{V_{\text{P}}l_{\text{P}}}}={\frac {F_{\text{P}}}{V_{\text{P}}^{2}}}=\varepsilon _{0}}
ε
P
=
C
P
l
P
=
F
P
V
P
2
=
1
k
e
=
4
π
ε
0
{\displaystyle \varepsilon _{\text{P}}={\frac {C_{\text{P}}}{l_{\text{P}}}}={\frac {F_{\text{P}}}{V_{\text{P}}^{2}}}={\frac {1}{k_{\text{e}}}}=4\pi \varepsilon _{0}}
8
,
854187813
⋅
10
−
12
F
m
{\displaystyle 8,854187813\cdot 10^{-12}{\frac {\mathrm {F} }{m}}}
1
,
11265006
⋅
10
−
10
F
m
{\displaystyle 1,11265006\cdot 10^{-10}{\frac {\mathrm {F} }{m}}}
Permeabilità di Planck
(Costante magnetica)
Permeabilità magnetica
[
L
]
[
M
]
[
Q
]
−
2
{\displaystyle \left[L\right]\left[M\right]\left[Q\right]^{-2}}
μ
P
=
L
P
l
P
=
ϕ
P
B
l
P
=
1
ε
0
c
2
=
μ
0
{\displaystyle \mu _{\text{P}}={\frac {L_{\text{P}}}{l_{\text{P}}}}={\frac {{\phi }_{\text{P}}^{B}}{l_{\text{P}}}}={\frac {1}{\varepsilon _{0}c^{2}}}=\mu _{0}}
μ
P
=
L
P
l
P
=
V
P
I
m
P
=
1
4
π
ε
0
c
2
=
μ
0
4
π
{\displaystyle \mu _{\text{P}}={\frac {L_{\text{P}}}{l_{\text{P}}}}={\frac {V_{\text{P}}}{{I_{m}}_{\text{P}}}}={\frac {1}{4\pi \,\varepsilon _{0}c^{2}}}={\frac {\mu _{0}}{4\pi }}}
1
,
25663706212
μ
H
m
{\displaystyle 1,25663706212{\frac {\mathrm {\mu H} }{m}}}
10
,
0000000055
μ
H
m
{\displaystyle 10,0000000055{\frac {\mathrm {\mu H} }{m}}}
Induttanza elettrica di Planck
Induttanza
[
L
]
2
[
M
]
[
Q
]
−
2
{\displaystyle \left[L\right]^{2}\left[M\right]\left[Q\right]^{-2}}
L
P
=
E
P
I
P
=
m
P
l
P
2
q
P
2
=
4
π
ℏ
G
ε
0
2
c
7
{\displaystyle L_{\text{P}}={\frac {E_{\text{P}}}{I_{\text{P}}}}={\frac {m_{\text{P}}l_{\text{P}}^{2}}{q_{\text{P}}^{2}}}={\sqrt {\frac {4\pi \hbar G}{\varepsilon _{0}^{2}c^{7}}}}}
L
P
=
E
P
I
P
2
=
m
P
l
P
2
q
P
2
=
G
ℏ
16
π
2
ε
0
2
c
7
{\displaystyle L_{\text{P}}={\frac {E_{\text{P}}}{I_{\text{P}}^{2}}}={\frac {m_{\text{P}}l_{\text{P}}^{2}}{q_{\text{P}}^{2}}}={\sqrt {\frac {G\hbar }{16\pi ^{2}\varepsilon _{0}^{2}c^{7}}}}}
7
,
199871
⋅
10
−
41
H
{\displaystyle 7,199871\cdot 10^{-41}\mathrm {H} }
1
,
61625518
⋅
10
−
42
H
{\displaystyle 1,61625518\cdot 10^{-42}\mathrm {H} }
Resistività elettrica di Planck
Resistività elettrica
[
L
]
3
[
M
]
[
T
]
−
1
[
Q
]
−
2
{\displaystyle \left[L\right]^{3}\left[M\right]\left[T\right]^{-1}\left[Q\right]^{-2}}
Z
P
ρ
=
Z
P
l
P
=
t
P
k
e
=
4
π
ℏ
G
ε
0
2
c
5
{\displaystyle Z_{\text{P}}^{\rho }=Z_{\text{P}}l_{\text{P}}=t_{\text{P}}k_{\text{e}}={\sqrt {\frac {4\pi \hbar G}{\varepsilon _{0}^{2}c^{5}}}}}
Z
P
ρ
=
Z
P
l
P
=
t
P
k
e
=
ℏ
G
16
π
2
ε
0
2
c
5
{\displaystyle Z_{\text{P}}^{\rho }=Z_{\text{P}}l_{\text{P}}=t_{\text{P}}k_{\text{e}}={\sqrt {\frac {\hbar G}{16\pi ^{2}\varepsilon _{0}^{2}c^{5}}}}}
2
,
15847
⋅
10
−
32
Ω
⋅
m
{\displaystyle 2,15847\cdot 10^{-32}\Omega \cdot m}
4
,
84541
⋅
10
−
34
Ω
⋅
m
{\displaystyle 4,84541\cdot 10^{-34}\Omega \cdot m}
Conduttività elettrica di Planck
Conduttività elettrica
[
L
]
−
3
[
M
]
−
1
[
T
]
[
Q
]
2
{\displaystyle \left[L\right]^{-3}\left[M\right]^{-1}\left[T\right]\left[Q\right]^{2}}
σ
P
=
1
Z
P
ρ
=
ε
0
2
c
5
4
π
ℏ
G
{\displaystyle \sigma _{\text{P}}={\frac {1}{Z_{\text{P}}^{\rho }}}={\sqrt {\frac {\varepsilon _{0}^{2}c^{5}}{4\pi \hbar G}}}}
σ
P
=
1
Z
P
ρ
=
16
π
2
ε
0
2
c
5
ℏ
G
{\displaystyle \sigma _{\text{P}}={\frac {1}{Z_{\text{P}}^{\rho }}}={\sqrt {\frac {16\pi ^{2}\varepsilon _{0}^{2}c^{5}}{\hbar G}}}}
4
,
632918
⋅
10
31
S
m
{\displaystyle 4,632918\cdot 10^{31}{\frac {\mathrm {S} }{m}}}
2
,
063809
⋅
10
33
S
m
{\displaystyle 2,063809\cdot 10^{33}{\frac {\mathrm {S} }{m}}}
Densità di carica di Planck
Densità di carica
[
L
]
−
3
[
Q
]
{\displaystyle \left[L\right]^{-3}\left[Q\right]}
ρ
e
P
=
q
P
l
P
3
=
ε
0
c
10
64
π
3
ℏ
2
G
3
{\displaystyle {\rho _{e}}_{\text{P}}={\frac {q_{\text{P}}}{l_{\text{P}}^{3}}}={\sqrt {\frac {\varepsilon _{0}c^{10}}{64\pi ^{3}\hbar ^{2}G^{3}}}}}
ρ
e
P
=
q
P
l
P
3
=
4
π
ε
0
c
10
ℏ
2
G
3
{\displaystyle {\rho _{e}}_{\text{P}}={\frac {q_{\text{P}}}{l_{\text{P}}^{3}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{10}}{\hbar ^{2}G^{3}}}}}
2
,
813056
⋅
10
86
C
m
3
{\displaystyle 2,813056\cdot 10^{86}{\frac {\mathrm {C} }{m^{3}}}}
4
,
442200
⋅
10
86
C
m
3
{\displaystyle 4,442200\cdot 10^{86}{\frac {\mathrm {C} }{m^{3}}}}
Forza del campo elettrico di Planck
Campo elettrico
[
L
]
[
M
]
[
T
]
−
2
[
Q
]
−
1
{\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-2}\left[Q\right]^{-1}}
E
P
=
F
P
q
P
=
c
7
16
π
2
ε
0
ℏ
G
2
{\displaystyle {\bf {E}}_{\text{P}}={\frac {F_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{7}}{16\pi ^{2}\varepsilon _{0}\hbar G^{2}}}}}
E
P
=
F
P
q
P
=
c
7
4
π
ε
0
ℏ
G
2
{\displaystyle {\bf {E}}_{\text{P}}={\frac {F_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{7}}{4\pi \varepsilon _{0}\hbar G^{2}}}}}
1
,
820306
⋅
10
61
V
m
{\displaystyle 1,820306\cdot 10^{61}{\frac {\mathrm {V} }{m}}}
6
,
452817
⋅
10
61
V
m
{\displaystyle 6,452817\cdot 10^{61}{\frac {\mathrm {V} }{m}}}
Forza del campo magnetico di Planck
Campo magnetico
[
L
]
−
1
[
T
]
−
1
[
Q
]
{\displaystyle \left[L\right]^{-1}\left[T\right]^{-1}\left[Q\right]}
H
P
=
I
P
l
P
=
ε
0
c
9
16
π
2
ℏ
G
2
{\displaystyle {\bf {H}}_{\text{P}}={\frac {I_{\text{P}}}{l_{\text{P}}}}={\sqrt {\frac {\varepsilon _{0}c^{9}}{16\pi ^{2}\hbar G^{2}}}}}
H
P
=
I
P
l
P
=
4
π
ε
0
c
9
ℏ
G
2
{\displaystyle {\bf {H}}_{\text{P}}={\frac {I_{\text{P}}}{l_{\text{P}}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{9}}{\hbar G^{2}}}}}
4
,
831855
⋅
10
58
A
m
{\displaystyle 4,831855\cdot 10^{58}{\frac {\mathrm {A} }{m}}}
2
,
152428
⋅
10
60
A
m
{\displaystyle 2,152428\cdot 10^{60}{\frac {\mathrm {A} }{m}}}
Induzione elettrica di Planck
Corrente di spostamento
[
L
]
−
2
[
T
]
−
1
[
Q
]
{\displaystyle \left[L\right]^{-2}\left[T\right]^{-1}\left[Q\right]}
D
P
=
q
P
l
P
2
=
ε
0
c
7
16
π
2
ℏ
G
2
{\displaystyle {\bf {D}}_{\text{P}}={\frac {q_{\text{P}}}{l_{\text{P}}^{2}}}={\sqrt {\frac {\varepsilon _{0}c^{7}}{16\pi ^{2}\hbar G^{2}}}}}
D
P
=
q
P
l
P
2
=
4
π
ε
0
c
7
ℏ
G
2
{\displaystyle {\bf {D}}_{\text{P}}={\frac {q_{\text{P}}}{l_{\text{P}}^{2}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{7}}{\hbar G^{2}}}}}
1
,
611733
⋅
10
50
C
m
2
{\displaystyle 1,611733\cdot 10^{50}{\frac {\mathrm {C} }{m^{2}}}}
7
,
179727
⋅
10
51
C
m
2
{\displaystyle 7,179727\cdot 10^{51}{\frac {\mathrm {C} }{m^{2}}}}
Induzione magnetica di Planck
Campo magnetico
[
M
]
[
T
]
−
1
[
Q
]
−
1
{\displaystyle \left[M\right]\left[T\right]^{-1}\left[Q\right]^{-1}}
B
P
=
F
P
l
P
I
P
=
c
5
16
π
2
ε
0
ℏ
G
2
{\displaystyle {\bf {B}}_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}I_{\text{P}}}}={\sqrt {\frac {c^{5}}{16\pi ^{2}\varepsilon _{0}\hbar G^{2}}}}}
B
P
=
F
P
l
P
I
P
=
ℏ
q
P
l
P
2
=
c
5
4
π
ε
0
ℏ
G
2
{\displaystyle {\bf {B}}_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}I_{\text{P}}}}={\frac {\hbar }{q_{\text{P}}l_{\text{P}}^{2}}}={\sqrt {\frac {c^{5}}{4\pi \varepsilon _{0}\hbar G^{2}}}}}
6
,
071888
⋅
10
52
T
{\displaystyle 6,071888\cdot 10^{52}\;\mathrm {T} }
2
,
152428
⋅
10
53
T
{\displaystyle 2,152428\cdot 10^{53}\;\mathrm {T} }
Flusso elettrico di Planck
Flusso magnetico
[
L
]
2
[
M
]
[
T
]
−
1
[
Q
]
−
1
{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-1}\left[Q\right]^{-1}}
ϕ
P
E
=
E
P
l
P
2
=
ϕ
P
l
P
=
ℏ
c
ε
0
{\displaystyle {\phi }_{\text{P}}^{E}={\bf {E}}_{\text{P}}l_{\text{P}}^{2}=\phi _{\text{P}}l_{\text{P}}={\sqrt {\frac {\hbar c}{\varepsilon _{0}}}}}
ϕ
P
E
=
E
P
l
P
2
=
ϕ
P
l
P
=
ℏ
c
4
π
ε
0
{\displaystyle {\phi }_{\text{P}}^{E}={\bf {E}}_{\text{P}}l_{\text{P}}^{2}=\phi _{\text{P}}l_{\text{P}}={\sqrt {\frac {\hbar c}{4\pi \varepsilon _{0}}}}}
5
,
975498
⋅
10
−
8
V
⋅
m
{\displaystyle 5,975498\cdot 10^{-8}\mathrm {V} \cdot m}
1
,
685657
⋅
10
−
8
V
⋅
m
{\displaystyle 1,685657\cdot 10^{-8}\mathrm {V} \cdot m}
Flusso magnetico di Planck
Flusso magnetico
[
L
]
2
[
M
]
[
T
]
−
1
[
Q
]
−
1
{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-1}\left[Q\right]^{-1}}
ϕ
P
B
=
B
P
l
P
2
=
A
P
l
P
=
ℏ
ε
0
c
{\displaystyle {\phi }_{\text{P}}^{B}={\bf {B}}_{\text{P}}l_{\text{P}}^{2}={\bf {A}}_{\text{P}}l_{\text{P}}={\sqrt {\frac {\hbar }{\varepsilon _{0}c}}}}
ϕ
P
B
=
E
P
I
P
=
A
P
l
P
=
ℏ
q
P
=
ℏ
4
π
ε
0
c
{\displaystyle {\phi }_{\text{P}}^{B}={\frac {E_{\text{P}}}{I_{\text{P}}}}={\bf {A}}_{\text{P}}l_{\text{P}}={\frac {\hbar }{q_{\text{P}}}}={\sqrt {\frac {\hbar }{4\pi \varepsilon _{0}c}}}}
1
,
993211
⋅
10
−
16
W
b
{\displaystyle 1,993211\cdot 10^{-16}\,\mathrm {Wb} }
5
,
622746
⋅
10
−
17
W
b
{\displaystyle 5,622746\cdot 10^{-17}\;\mathrm {Wb} }
Potenziale elettrico di Planck
Tensione
[
L
]
2
[
M
]
[
T
]
−
2
[
Q
]
−
1
{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}\left[Q\right]^{-1}}
ϕ
P
=
V
P
=
E
P
q
P
=
c
4
4
π
ε
0
G
{\displaystyle \phi _{\text{P}}=V_{\text{P}}={\frac {E_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{4}}{4\pi \varepsilon _{0}G}}}}
1
,
042940
⋅
10
27
V
{\displaystyle 1,042940\cdot 10^{27}\;\mathrm {V} }
Potenziale magnetico di Planck
Corrente magnetica
[
L
]
[
M
]
[
T
]
−
1
[
Q
]
−
1
{\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-1}\left[Q\right]^{-1}}
A
P
=
E
P
q
m
P
=
F
P
I
P
=
V
P
v
P
=
B
P
l
P
=
ℏ
q
P
l
P
=
c
2
4
π
ε
0
G
{\displaystyle {{\bf {A}}_{\text{P}}}={\frac {{E}_{\text{P}}}{{{q}_{m}}_{\text{P}}}}={\frac {{F}_{\text{P}}}{{I}_{\text{P}}}}={\frac {{V}_{\text{P}}}{{v}_{\text{P}}}}={{\bf {B}}_{\text{P}}}{{l}_{\text{P}}}={\frac {\hbar }{{{q}_{\text{P}}}{{l}_{\text{P}}}}}={\sqrt {\frac {{c}^{2}}{4\pi {{\varepsilon }_{0}}G}}}}
3
,
478873
⋅
10
18
T
⋅
m
{\displaystyle 3,478873\cdot 10^{18}\;\mathrm {T} \cdot m}
Densità di corrente di Planck
Densità di corrente elettrica
[
L
]
−
2
[
T
]
−
1
[
Q
]
{\displaystyle \left[L\right]^{-2}\left[T\right]^{-1}\left[Q\right]}
J
P
=
I
P
l
P
2
=
ρ
e
P
v
P
=
ε
0
c
12
64
π
3
ℏ
2
G
3
{\displaystyle {\bf {J}}_{\text{P}}={\frac {I_{\text{P}}}{l_{\text{P}}^{2}}}={{\rho }_{e}}_{\text{P}}v_{\text{P}}={\sqrt {\frac {\varepsilon _{0}c^{12}}{64\pi ^{3}\hbar ^{2}G^{3}}}}}
J
P
=
I
P
l
P
2
=
ρ
e
P
v
P
=
4
π
ε
0
c
12
ℏ
2
G
3
{\displaystyle {\bf {J}}_{\text{P}}={\frac {I_{\text{P}}}{l_{\text{P}}^{2}}}={{\rho }_{e}}_{\text{P}}v_{\text{P}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{12}}{\hbar ^{2}G^{3}}}}}
8
,
433329
⋅
10
92
A
m
2
{\displaystyle 8,433329\cdot 10^{92}\;{\frac {\mathrm {A} }{m^{2}}}}
1
,
331738
⋅
10
95
A
m
2
{\displaystyle 1,331738\cdot 10^{95}\;{\frac {\mathrm {A} }{m^{2}}}}
Momento elettrico di Planck
Dipolo elettrico
[
L
]
[
Q
]
{\displaystyle \left[L\right]\left[Q\right]}
d
P
=
q
P
l
P
=
4
π
ε
0
ℏ
2
G
c
2
{\displaystyle {d}_{\text{P}}=q_{\text{P}}l_{\text{P}}={\sqrt {\frac {4\pi \varepsilon _{0}\hbar ^{2}G}{c^{2}}}}}
3
,
031361
⋅
10
−
53
C
⋅
m
{\displaystyle 3,031361\cdot 10^{-53}\;\mathrm {C} \cdot m}
Momento magnetico di Planck
Dipolo magnetico
[
L
]
2
[
T
]
−
1
[
Q
]
{\displaystyle \left[L\right]^{2}\left[T\right]^{-1}\left[Q\right]}
μ
d
P
=
q
m
P
l
P
=
I
P
l
P
2
=
4
π
ε
0
ℏ
2
G
{\displaystyle {\mu _{d}}_{\text{P}}={q_{m}}_{\text{P}}l_{\text{P}}=I_{\text{P}}l_{\text{P}}^{2}={\sqrt {4\pi \varepsilon _{0}\hbar ^{2}G}}}
9
,
087791
⋅
10
−
45
J
T
{\displaystyle 9,087791\cdot 10^{-45}\;{\frac {\mathrm {J} }{\mathrm {T} }}}
Monopolo magnetico di Planck
Carica magnetica
[
L
]
[
T
]
−
1
[
Q
]
{\displaystyle \left[L\right]\left[T\right]^{-1}\left[Q\right]}
q
m
P
=
q
P
v
P
=
F
P
B
P
=
ε
0
ℏ
c
3
{\displaystyle {{q}_{m}}_{\text{P}}=q_{\text{P}}v_{P}={\frac {F_{\text{P}}}{{\bf {B}}_{\text{P}}}}={\sqrt {{{\varepsilon }_{0}}\hbar {{c}^{3}}}}}
q
m
P
=
q
P
v
P
=
4
π
μ
0
ϕ
P
B
=
4
π
ε
0
ℏ
c
3
{\displaystyle {{q}_{m}}_{\text{P}}=q_{\text{P}}v_{P}={\frac {4\pi }{\mu _{0}}}\phi _{\text{P}}^{B}={\sqrt {4\pi {{\varepsilon }_{0}}\hbar {{c}^{3}}}}}
1.586147
⋅
10
−
10
N
T
{\displaystyle 1.586147\cdot 10^{-10}{\frac {\mathrm {N} }{\mathrm {T} }}}
5.622746
⋅
10
−
10
A
⋅
m
{\displaystyle 5.622746\cdot 10^{-10}\mathrm {A} \cdot m}
Corrente magnetica di Planck
Corrente magnetica
[
L
]
[
T
]
−
2
[
Q
]
{\displaystyle \left[L\right]\left[T\right]^{-2}\left[Q\right]}
I
m
P
=
q
m
P
t
P
=
q
P
a
P
=
I
P
v
P
=
ε
0
c
8
4
π
G
{\displaystyle {I_{m}}_{\text{P}}={\frac {{q_{m}}_{\text{P}}}{t_{\text{P}}}}={q_{\text{P}}}{a_{\text{P}}}={I_{\text{P}}}{v_{\text{P}}}={\sqrt {\frac {\varepsilon _{0}c^{8}}{4\pi G}}}}
I
m
P
=
q
m
P
t
P
=
q
P
a
P
=
4
π
ε
0
c
8
G
{\displaystyle {I_{m}}_{\text{P}}={\frac {{q_{m}}_{\text{P}}}{t_{\text{P}}}}={q_{\text{P}}}{a_{\text{P}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{8}}{G}}}}
8
,
29945
⋅
10
32
V
⋅
m
H
{\displaystyle 8,29945\cdot 10^{32}{\frac {\mathrm {V} \cdot m}{\mathrm {H} }}}
1
,
04294
⋅
10
34
W
T
⋅
m
{\displaystyle 1,04294\cdot 10^{34}{\frac {\mathrm {W} }{\mathrm {T} \cdot m}}}
Densità di corrente magnetica di Planck
Corrente magnetica
[
L
]
−
1
[
T
]
−
2
[
Q
]
{\displaystyle \left[L\right]^{-1}\left[T\right]^{-2}\left[Q\right]}
I
m
P
l
P
2
=
J
P
v
P
=
I
P
l
P
t
P
=
ε
0
c
14
64
π
3
ℏ
2
G
3
{\displaystyle {\frac {{I_{m}}_{\text{P}}}{l_{\text{P}}^{2}}}={\bf {J}}_{\text{P}}v_{\text{P}}={\frac {{I}_{\text{P}}}{l_{\text{P}}t_{\text{P}}}}={\sqrt {\frac {\varepsilon _{0}c^{14}}{64\pi ^{3}\hbar ^{2}G^{3}}}}}
I
m
P
l
P
2
=
J
P
v
P
=
I
P
l
P
t
P
=
4
π
ε
0
c
14
ℏ
2
G
3
{\displaystyle {\frac {{I_{m}}_{\text{P}}}{l_{\text{P}}^{2}}}={\bf {J}}_{\text{P}}v_{\text{P}}={\frac {{I}_{\text{P}}}{l_{\text{P}}t_{\text{P}}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{14}}{\hbar ^{2}G^{3}}}}}
2
,
52825
⋅
10
101
V
m
⋅
H
{\displaystyle 2,52825\cdot 10^{101}{\frac {\mathrm {V} }{m\cdot \mathrm {H} }}}
3
,
99245
⋅
10
103
V
m
⋅
H
{\displaystyle 3,99245\cdot 10^{103}{\frac {\mathrm {V} }{m\cdot \mathrm {H} }}}
Carica specifica di Planck
carica specifica
[
M
]
−
1
[
Q
]
{\displaystyle \left[M\right]^{-1}\left[Q\right]}
q
r
s
=
q
P
m
P
=
2
π
r
s
μ
0
=
G
k
e
=
4
π
ε
0
G
{\displaystyle q_{r_{\text{s}}}={\frac {q_{\text{P}}}{m_{\text{P}}}}={\sqrt {\frac {2\pi {r_{\text{s}}}}{\mu _{0}}}}={\sqrt {\frac {G}{k_{e}}}}={\sqrt {4\pi \varepsilon _{0}G}}}
8.617517
⋅
10
−
11
H
z
T
{\displaystyle 8.617517\cdot 10^{-11}\;{\frac {\mathrm {Hz} }{\mathrm {T} }}}
Monopolo specifica di Planck [non chiaro ]
carica magnetica specifica
[
L
]
[
T
]
−
1
[
M
]
−
1
[
Q
]
{\displaystyle \left[L\right]\left[T\right]^{-1}\left[M\right]^{-1}\left[Q\right]}
q
r
s
c
=
q
P
c
m
P
=
a
P
B
P
=
4
π
ε
0
c
2
G
{\displaystyle q_{r_{\text{s}}}c={\frac {q_{\text{P}}c}{m_{\text{P}}}}={\frac {a_{\text{P}}}{{\bf {B}}_{\text{P}}}}={\sqrt {4\pi \varepsilon _{0}c^{2}G}}}
q
r
s
c
=
q
P
c
m
P
=
a
P
B
P
=
4
π
G
μ
0
{\displaystyle q_{r_{\text{s}}}c={\frac {q_{\text{P}}c}{m_{\text{P}}}}={\frac {a_{\text{P}}}{{\bf {B}}_{\text{P}}}}={\sqrt {\frac {4\pi G}{\mu _{0}}}}}
0
,
0258347
m
s
2
⋅
T
{\displaystyle 0,0258347{\frac {m}{s^{2}\cdot \mathrm {T} }}}
0
,
0258347
m
s
2
⋅
T
{\displaystyle 0,0258347{\frac {m}{s^{2}\cdot \mathrm {T} }}}
Proprietà termodinamiche
Temperatura di Planck in 2π
Temperatura
[
Θ
]
{\displaystyle \left[\Theta \right]}
Θ
P
2
π
=
2
π
Θ
P
=
2
π
E
P
k
B
=
π
ℏ
c
5
G
k
B
2
{\displaystyle {\Theta }_{\text{P}}^{_{2\pi }}=2\pi {\Theta _{\text{P}}}={\frac {2\pi E_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {\pi \hbar c^{5}}{G{k_{\text{B}}^{2}}}}}}
Θ
P
2
π
=
2
π
Θ
P
=
2
π
m
P
c
2
k
B
=
π
ℏ
c
5
G
k
B
2
{\displaystyle \Theta _{\text{P}}^{_{2\pi }}=2\pi {\Theta _{\text{P}}}={\frac {2\pi m_{\text{P}}c^{2}}{k_{\text{B}}}}={\sqrt {\frac {\pi \hbar c^{5}}{Gk_{\text{B}}^{2}}}}}
2
,
511185
⋅
10
32
K
{\displaystyle 2,511185\cdot 10^{32}\mathrm {K} }
8
,
901917
⋅
10
32
K
{\displaystyle 8,901917\cdot 10^{32}\mathrm {K} }
Entropia di Planck
Entropia
[
L
]
2
[
M
]
[
T
]
−
2
[
Θ
]
−
1
{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}\left[\Theta \right]^{-1}}
S
P
=
E
P
Θ
P
=
k
B
{\displaystyle S_{\text{P}}={\frac {E_{\text{P}}}{\Theta _{\text{P}}}}=k_{\text{B}}}
1
,
380649
⋅
10
−
23
J
K
{\displaystyle 1,380649\cdot 10^{-23}{\frac {\mathrm {J} }{\mathrm {K} }}}
Entropia di Planck in 2 π
Entropia
[
L
]
2
[
M
]
[
T
]
−
2
[
Θ
]
−
1
{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}\left[\Theta \right]^{-1}}
S
2
π
P
=
E
P
2
π
Θ
P
=
k
B
2
π
{\displaystyle {S_{2\pi }}_{\text{P}}={\frac {E_{\text{P}}}{2\pi \Theta _{\text{P}}}}={\frac {k_{\text{B}}}{2\pi }}}
2
,
197371
⋅
10
−
24
J
K
{\displaystyle 2,197371\cdot 10^{-24}{\frac {\mathrm {J} }{\mathrm {K} }}}
Coefficiente di dilatazione termica di Planck
Coefficiente di dilatazione termica
[
Θ
]
−
1
{\displaystyle \left[\Theta \right]^{-1}}
α
V
P
=
1
Θ
P
=
k
B
E
P
=
4
π
G
k
B
2
ℏ
c
5
{\displaystyle {\alpha _{_{V}}}_{\text{P}}={\frac {1}{\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{E_{\text{P}}}}={\sqrt {\frac {4\pi G{k_{\text{B}}}^{2}}{\hbar c^{5}}}}}
α
V
P
=
1
Θ
P
=
k
B
E
P
=
G
k
B
2
ℏ
c
5
{\displaystyle {\alpha _{_{V}}}_{\text{P}}={\frac {1}{\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{E_{\text{P}}}}={\sqrt {\frac {G{k_{\text{B}}}^{2}}{\hbar c^{5}}}}}
2
,
502080
⋅
10
−
33
1
K
{\displaystyle 2,502080\cdot 10^{-33}{\frac {1}{\mathrm {K} }}}
7
,
058238
⋅
10
−
33
1
K
{\displaystyle 7,058238\cdot 10^{-33}{\frac {1}{\mathrm {K} }}}
Capacità termica di Planck
Capacità termica - Entropia
[
L
]
2
[
M
]
[
T
]
−
2
[
Θ
]
−
1
{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}\left[\Theta \right]^{-1}}
C
P
Θ
=
E
P
Θ
P
=
k
B
{\displaystyle {C}_{\text{P}}^{\Theta }={\frac {E_{\text{P}}}{\Theta _{\text{P}}}}=k_{\text{B}}}
1
,
380649
⋅
10
−
23
J
K
{\displaystyle 1,380649\cdot 10^{-23}{\frac {\mathrm {J} }{\mathrm {K} }}}
Calore specifico di Planck
Calore specifico
[
L
]
2
[
T
]
−
2
[
Θ
]
−
1
{\displaystyle \left[L\right]^{2}\left[T\right]^{-2}\left[\Theta \right]^{-1}}
c
p
P
=
E
P
m
P
Θ
P
=
k
B
m
P
=
4
π
G
k
B
2
ℏ
c
{\displaystyle {c_{p}}_{\text{P}}={\frac {E_{\text{P}}}{m_{\text{P}}\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{m_{\text{P}}}}={\sqrt {\frac {4\pi Gk_{\text{B}}^{2}}{\hbar c}}}}
c
p
P
=
E
P
m
P
Θ
P
=
k
B
m
P
=
G
k
B
2
ℏ
c
{\displaystyle {c_{p}}_{\text{P}}={\frac {E_{\text{P}}}{m_{\text{P}}\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{m_{\text{P}}}}={\sqrt {\frac {Gk_{\text{B}}^{2}}{\hbar c}}}}
2
,
24876
⋅
10
−
15
J
k
g
⋅
K
{\displaystyle 2,24876\cdot 10^{-15}{\frac {\mathrm {J} }{kg\cdot \mathrm {K} }}}
6
,
34363
⋅
10
−
16
J
k
g
⋅
K
{\displaystyle 6,34363\cdot 10^{-16}{\frac {\mathrm {J} }{kg\cdot \mathrm {K} }}}
Calore volumetrico di Planck
Calore volumetrico
[
L
]
−
1
[
M
]
[
T
]
−
2
[
Θ
]
−
1
{\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}\left[\Theta \right]^{-1}}
c
V
P
=
E
P
l
P
3
Θ
P
=
k
B
l
P
3
=
c
9
k
B
2
64
π
3
ℏ
3
G
3
{\displaystyle {c_{V}}_{\text{P}}={\frac {E_{\text{P}}}{l_{\text{P}}^{3}\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{l_{\text{P}}^{3}}}={\sqrt {\frac {c^{9}k_{\text{B}}^{2}}{64\pi ^{3}\hbar ^{3}G^{3}}}}}
c
V
P
=
E
P
l
P
3
Θ
P
=
k
B
l
P
3
=
c
9
k
B
2
ℏ
3
G
3
{\displaystyle {c_{V}}_{\text{P}}={\frac {E_{\text{P}}}{l_{\text{P}}^{3}\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{l_{\text{P}}^{3}}}={\sqrt {\frac {c^{9}k_{\text{B}}^{2}}{\hbar ^{3}G^{3}}}}}
7
,
340723
⋅
10
79
J
m
3
⋅
K
{\displaystyle 7,340723\cdot 10^{79}{\frac {\mathrm {J} }{m^{3}\cdot \mathrm {K} }}}
3
,
270044
⋅
10
81
J
m
3
⋅
K
{\displaystyle 3,270044\cdot 10^{81}{\frac {\mathrm {J} }{m^{3}\cdot \mathrm {K} }}}
Resistenza termica di Planck
Resistenza termica
[
L
]
−
2
[
M
]
−
1
[
T
]
3
[
Θ
]
{\displaystyle \left[L\right]^{-2}\left[M\right]^{-1}\left[T\right]^{3}\left[\Theta \right]}
Ω
Θ
P
=
Θ
P
P
P
=
t
P
k
B
=
4
π
ℏ
G
c
5
k
B
2
{\displaystyle {\Omega _{\Theta }}_{\text{P}}={\frac {\Theta _{\text{P}}}{P_{\text{P}}}}={\frac {t_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {4\pi \hbar G}{c^{5}k_{\text{B}}^{2}}}}}
Ω
Θ
P
=
Θ
P
P
P
=
t
P
k
B
=
ℏ
G
c
5
k
B
2
{\displaystyle {\Omega _{\Theta }}_{\text{P}}={\frac {\Theta _{\text{P}}}{P_{\text{P}}}}={\frac {t_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {\hbar G}{c^{5}k_{\text{B}}^{2}}}}}
1
,
384238
⋅
10
−
20
K
W
{\displaystyle 1,384238\cdot 10^{-20}{\frac {\mathrm {K} }{\mathrm {W} }}}
3
,
904864
⋅
10
−
21
K
W
{\displaystyle 3,904864\cdot 10^{-21}{\frac {\mathrm {K} }{\mathrm {W} }}}
Conduttanza termica di Planck
Conduttanza termica
[
L
]
2
[
M
]
[
T
]
−
3
[
Θ
]
−
1
{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-3}\left[\Theta \right]^{-1}}
G
Θ
P
=
k
B
t
P
=
c
5
k
B
2
4
π
ℏ
G
≃
A
P
2
π
α
{\displaystyle {G_{\Theta }}_{\text{P}}={\frac {k_{\text{B}}}{t_{\text{P}}}}={\sqrt {\frac {c^{5}k_{\text{B}}^{2}}{4\pi \hbar G}}}\simeq {\bf {A}}_{\text{P}}{\frac {2\pi }{\sqrt {\alpha }}}}
G
Θ
P
=
1
Ω
Θ
P
=
k
B
t
P
=
c
5
k
B
2
ℏ
G
{\displaystyle {G_{\Theta }}_{\text{P}}={\frac {1}{{\Omega _{\Theta }}_{\text{P}}}}={\frac {k_{\text{B}}}{t_{\text{P}}}}={\sqrt {\frac {c^{5}k_{\text{B}}^{2}}{\hbar G}}}}
7
,
224190
⋅
10
19
W
K
{\displaystyle 7,224190\cdot 10^{19}{\frac {\mathrm {W} }{\mathrm {K} }}}
2
,
560909
⋅
10
20
W
K
{\displaystyle 2,560909\cdot 10^{20}{\frac {\mathrm {W} }{\mathrm {K} }}}
Resistività termica di Planck
Resistività termica
[
L
]
−
1
[
M
]
−
1
[
T
]
3
[
Θ
]
{\displaystyle \left[L\right]^{-1}\left[M\right]^{-1}\left[T\right]^{3}\left[\Theta \right]}
1
λ
Θ
P
=
Ω
Θ
P
l
P
=
l
P
t
P
k
B
=
16
π
2
ℏ
2
G
2
c
8
k
B
2
{\displaystyle {\frac {1}{{\lambda _{\Theta }}_{\text{P}}}}={\Omega _{\Theta }}_{\text{P}}l_{\text{P}}={\frac {l_{\text{P}}t_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {16\pi ^{2}\hbar ^{2}G^{2}}{c^{8}k_{\text{B}}^{2}}}}}
1
λ
Θ
P
=
Ω
Θ
P
l
P
=
l
P
t
P
k
B
=
ℏ
2
G
2
c
8
k
B
2
{\displaystyle {\frac {1}{{\lambda _{\Theta }}_{\text{P}}}}={\Omega _{\Theta }}_{\text{P}}\,l_{\text{P}}={\frac {l_{\text{P}}t_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {\hbar ^{2}G^{2}}{c^{8}k_{\text{B}}^{2}}}}}
7
,
930958
⋅
10
−
55
m
⋅
K
W
{\displaystyle 7,930958\cdot 10^{-55}{\frac {m\cdot \mathrm {K} }{\mathrm {W} }}}
6
,
311256
⋅
10
−
56
m
⋅
K
W
{\displaystyle 6,311256\cdot 10^{-56}{\frac {m\cdot \mathrm {K} }{\mathrm {W} }}}
Conducibilità termica di Planck
Conducibilità termica
[
L
]
[
M
]
[
T
]
−
3
[
Θ
]
−
1
{\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-3}\left[\Theta \right]^{-1}}
λ
Θ
P
=
P
P
l
P
Θ
P
=
c
8
k
B
2
16
π
2
ℏ
2
G
2
≃
B
P
2
π
α
{\displaystyle {\lambda _{\Theta }}_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}\Theta _{\text{P}}}}={\sqrt {\frac {c^{8}k_{\text{B}}^{2}}{16\pi ^{2}\hbar ^{2}G^{2}}}}\simeq {\bf {B}}_{\text{P}}{\frac {2\pi }{\sqrt {\alpha }}}}
λ
Θ
P
=
P
P
l
P
Θ
P
=
c
8
k
B
2
ℏ
2
G
2
≃
B
P
2
π
α
{\displaystyle {\lambda _{\Theta }}_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}\Theta _{\text{P}}}}={\sqrt {\frac {c^{8}k_{\text{B}}^{2}}{\hbar ^{2}G^{2}}}}\simeq {\bf {B}}_{\text{P}}{\frac {2\pi }{\sqrt {\alpha }}}}
1
,
260881
⋅
10
54
W
m
⋅
K
{\displaystyle 1,260881\cdot 10^{54}{\frac {\mathrm {W} }{m\cdot \mathrm {K} }}}
1
,
584471
⋅
10
55
W
m
⋅
K
{\displaystyle 1,584471\cdot 10^{55}{\frac {\mathrm {W} }{m\cdot \mathrm {K} }}}
Isolatore termico di Planck
Isolatore termico
[
M
]
−
1
[
T
]
3
[
Θ
]
{\displaystyle \left[M\right]^{-1}\left[T\right]^{3}\left[\Theta \right]}
l
P
λ
Θ
P
=
Ω
Θ
P
l
P
2
=
64
π
3
ℏ
3
G
3
c
11
k
B
2
{\displaystyle {\frac {l_{\text{P}}}{{\lambda _{\Theta }}_{\text{P}}}}={\Omega _{\Theta }}_{\text{P}}l_{\text{P}}^{2}={\sqrt {\frac {64\pi ^{3}\hbar ^{3}G^{3}}{c^{11}k_{\text{B}}^{2}}}}}
l
P
λ
Θ
P
=
Ω
Θ
P
l
P
2
=
ℏ
3
G
3
c
11
k
B
2
{\displaystyle {\frac {l_{\text{P}}}{{\lambda _{\Theta }}_{\text{P}}}}={\Omega _{\Theta }}_{\text{P}}l_{\text{P}}^{2}={\sqrt {\frac {\hbar ^{3}G^{3}}{c^{11}k_{\text{B}}^{2}}}}}
4
,
54402
⋅
10
−
89
m
2
⋅
K
W
{\displaystyle 4,54402\cdot 10^{-89}{\frac {m^{2}\cdot \mathrm {K} }{\mathrm {W} }}}
1
,
02006
⋅
10
−
90
m
2
⋅
K
W
{\displaystyle 1,02006\cdot 10^{-90}{\frac {m^{2}\cdot \mathrm {K} }{\mathrm {W} }}}
Trasmittanza termica di Planck
Trasmittanza termica
[
M
]
[
T
]
−
3
[
Θ
]
−
1
{\displaystyle \left[M\right]\left[T\right]^{-3}\left[\Theta \right]^{-1}}
λ
Θ
P
l
P
=
1
Ω
Θ
P
l
P
2
=
c
11
k
B
2
64
π
3
ℏ
3
G
3
{\displaystyle {\frac {{\lambda _{\Theta }}_{\text{P}}}{l_{\text{P}}}}={\frac {1}{{\Omega _{\Theta }}_{\text{P}}l_{\text{P}}^{2}}}={\sqrt {\frac {c^{11}k_{\text{B}}^{2}}{64\pi ^{3}\hbar ^{3}G^{3}}}}}
λ
Θ
P
l
P
=
1
Ω
Θ
P
l
P
2
=
c
11
k
B
2
64
π
3
ℏ
3
G
3
{\displaystyle {\frac {{\lambda _{\Theta }}_{\text{P}}}{l_{\text{P}}}}={\frac {1}{{\Omega _{\Theta }}_{\text{P}}l_{\text{P}}^{2}}}={\sqrt {\frac {c^{11}k_{\text{B}}^{2}}{64\pi ^{3}\hbar ^{3}G^{3}}}}}
2
,
200693
⋅
10
88
W
m
2
⋅
K
{\displaystyle 2,200693\cdot 10^{88}{\frac {\mathrm {W} }{m^{2}\cdot \mathrm {K} }}}
9
,
803346
⋅
10
89
W
m
2
⋅
K
{\displaystyle 9,803346\cdot 10^{89}{\frac {\mathrm {W} }{m^{2}\cdot \mathrm {K} }}}
Flusso termico di Planck
Intensità luminosa
[
M
]
[
T
]
−
3
{\displaystyle \left[M\right]\left[T\right]^{-3}}
ϕ
q
P
=
λ
Θ
P
Θ
P
=
i
P
=
P
P
l
P
2
=
c
8
16
π
2
ℏ
G
2
{\displaystyle {\phi _{q}}_{\text{P}}={\lambda _{\Theta }}_{\text{P}}\Theta _{\text{P}}=i_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{8}}{16\pi ^{2}\hbar G^{2}}}}
ϕ
q
P
=
λ
Θ
P
Θ
P
=
i
P
=
P
P
l
P
2
=
c
8
ℏ
G
2
{\displaystyle {\phi _{q}}_{\text{P}}={\lambda _{\Theta }}_{\text{P}}\Theta _{\text{P}}=i_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{8}}{\hbar G^{2}}}}
8
,
795455
⋅
10
119
W
m
2
{\displaystyle 8,795455\cdot 10^{119}{\frac {\mathrm {W} }{m^{2}}}}
1
,
388923
⋅
10
122
W
m
2
{\displaystyle 1,388923\cdot 10^{122}{\frac {\mathrm {W} }{m^{2}}}}
Località di Planck
Seconda radiazione di costante
[
L
]
[
Θ
]
{\displaystyle \left[L\right]\left[\Theta \right]}
C
2
P
=
Θ
P
l
P
=
C
2
2
π
=
h
c
2
π
k
B
=
E
P
l
P
k
B
{\displaystyle C_{2_{\text{P}}}={\Theta _{\text{P}}l_{\text{P}}}={\frac {C_{2}}{2\pi }}={\frac {hc}{2\pi \,{k}_{\text{B}}}}={\frac {{E}_{\text{P}}{l}_{\text{P}}}{{k}_{\text{B}}}}}
0
,
002289885
K
⋅
m
{\displaystyle 0,002289885\;\mathrm {K} \cdot m}
Località di Planck con costante di struttura fine
Seconda radiazione di costante
[
L
]
[
Θ
]
{\displaystyle \left[L\right]\left[\Theta \right]}
C
α
P
=
2
π
Θ
P
l
P
α
=
C
2
α
=
h
c
α
k
B
=
2
π
E
P
l
P
α
k
B
≃
q
P
c
2
{\displaystyle C_{\alpha _{\text{P}}}={\frac {2\pi \Theta _{\text{P}}l_{\text{P}}}{\sqrt {\alpha }}}={\frac {C_{2}}{\sqrt {\alpha }}}={\frac {hc}{{\sqrt {\alpha }}{k}_{\text{B}}}}={\frac {2\pi {E}_{\text{P}}{l}_{\text{P}}}{{\sqrt {\alpha }}{k}_{\text{B}}}}\simeq q_{\text{P}}c^{2}}
0
,
168427
K
⋅
m
{\displaystyle 0,168427\;\mathrm {K} \cdot m}
Costante di Stefan-Boltzmann di Planck
Costante di proporzionalità
[
M
]
[
T
]
−
3
[
Θ
]
−
4
{\displaystyle \left[M\right]\left[T\right]^{-3}\left[\Theta \right]^{-4}}
σ
σ
P
=
P
P
l
P
2
Θ
P
4
=
k
B
4
ℏ
3
c
2
=
16
π
4
ℏ
c
2
C
2
4
{\displaystyle \sigma _{_{\sigma }{\text{P}}}={\frac {{P}_{\text{P}}}{{l}_{\text{P}}^{2}{\Theta }_{\text{P}}^{4}}}={\frac {{k}_{\text{B}}^{4}}{{\hbar }^{3}{c}^{2}}}={\frac {{16}\pi ^{4}\hbar {c}^{2}}{C_{2}^{4}}}}
3
,
447174
⋅
10
−
7
W
m
2
⋅
K
4
{\displaystyle 3,447174\cdot 10^{-7}{\frac {\mathrm {W} }{m^{2}\cdot \mathrm {K} ^{4}}}}
Proprietà radioattive
Attività specifica di Planck
Attività specifica
[
T
]
−
1
{\displaystyle \left[T\right]^{-1}}
1
t
P
=
c
5
4
π
ℏ
G
{\displaystyle {\frac {1}{t_{\text{P}}}}={\sqrt {\frac {c^{5}}{4\pi \hbar G}}}}
1
t
P
=
c
5
ℏ
G
{\displaystyle {\frac {1}{t_{\text{P}}}}={\sqrt {\frac {c^{5}}{\hbar G}}}}
5
,
232458
⋅
10
42
B
q
{\displaystyle 5,232458\cdot 10^{42}\mathrm {Bq} }
1
,
854858
⋅
10
43
B
q
{\displaystyle 1,854858\cdot 10^{43}\mathrm {Bq} }
Esposizione radioattiva di Planck
Radiazioni ionizzanti
[
M
]
−
1
[
Q
]
{\displaystyle \left[M\right]^{-1}\left[Q\right]}
q
r
s
=
q
P
m
P
=
2
π
r
s
μ
0
=
G
k
e
=
4
π
ε
0
G
{\displaystyle q_{r_{\text{s}}}={\frac {q_{\text{P}}}{m_{\text{P}}}}={\sqrt {\frac {2\pi {r_{\text{s}}}}{\mu _{0}}}}={\sqrt {\frac {G}{k_{e}}}}={\sqrt {4\pi \varepsilon _{0}G}}}
8
,
617
518
⋅
10
−
11
C
k
g
{\displaystyle 8,617\;518\cdot 10^{-11}\;{\frac {\mathrm {C} }{kg}}}
Potenziale gravitazionale di Planck
calorie specifiche
[
L
]
2
[
T
]
−
2
{\displaystyle \left[L\right]^{2}\left[T\right]^{-2}}
Φ
G
P
=
E
P
m
P
=
c
2
{\displaystyle {\Phi _{_{G}}}_{\text{P}}={\frac {E_{\text{P}}}{m_{\text{P}}}}=c^{2}}
89.875.517.873.681.764
J
k
g
{\displaystyle 89.875.517.873.681.764\;{\frac {\mathrm {J} }{kg}}}
Dose assorbita di Planck
Dose assorbita
[
L
]
2
[
T
]
−
2
{\displaystyle \left[L\right]^{2}\left[T\right]^{-2}}
Φ
G
P
=
E
P
m
P
=
c
2
{\displaystyle {\Phi _{_{G}}}_{\text{P}}={\frac {E_{\text{P}}}{m_{\text{P}}}}=c^{2}}
8
,
987552
⋅
10
16
G
y
{\displaystyle 8,987552\cdot 10^{16}\;\mathrm {Gy} }
Velocità di dose assorbita di Planck
Velocità di dose assorbita
[
L
]
2
[
T
]
−
3
{\displaystyle \left[L\right]^{2}\left[T\right]^{-3}}
Φ
G
P
t
P
=
c
9
4
π
ℏ
G
{\displaystyle {\frac {{\Phi _{_{G}}}_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {c^{9}}{4\pi \hbar G}}}}
Φ
G
P
t
P
=
c
9
ℏ
G
{\displaystyle {\frac {{\Phi _{_{G}}}_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {c^{9}}{\hbar G}}}}
4
,
702700
⋅
10
59
G
y
s
{\displaystyle 4,702700\cdot 10^{59}\;{\frac {\mathrm {Gy} }{s}}}
1
,
667064
⋅
10
60
G
y
s
{\displaystyle 1,667064\cdot 10^{60}\;{\frac {\mathrm {Gy} }{s}}}
Proprietà dei buchi neri
Massa lineare di Planck
Massa lineare
[
M
]
[
L
]
−
1
{\displaystyle \left[M\right]\left[L\right]^{-1}}
l
r
s
−
1
=
m
P
l
P
=
2
4
π
r
s
=
c
2
4
π
G
{\displaystyle {l_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{l_{\text{P}}}}={\frac {2}{4\pi r_{s}}}={\frac {c^{2}}{4\pi G}}}
l
r
s
−
1
=
m
P
l
P
=
2
r
s
=
c
2
G
{\displaystyle {l_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{l_{\text{P}}}}={\frac {2}{r_{s}}}={\frac {c^{2}}{G}}}
1
,
071583
⋅
10
26
k
g
m
{\displaystyle 1,071583\cdot 10^{26}\;{\frac {kg}{m}}}
1
,
346591
⋅
10
27
k
g
m
{\displaystyle 1,346591\cdot 10^{27}\;{\frac {kg}{m}}}
Impedenza meccanica di Planck
Impedenza meccanica
[
M
]
[
L
]
−
1
{\displaystyle \left[M\right]\left[L\right]^{-1}}
t
r
s
−
1
=
m
P
t
P
=
2
c
4
π
r
s
=
c
3
4
π
G
{\displaystyle {t_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{t_{\text{P}}}}={\frac {2c}{4\pi r_{s}}}={\frac {c^{3}}{4\pi G}}}
t
r
s
−
1
=
m
P
l
P
=
2
c
r
s
=
c
3
G
{\displaystyle {t_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{l_{\text{P}}}}={\frac {2c}{r_{s}}}={\frac {c^{3}}{G}}}
3
,
212525
⋅
10
34
k
g
s
{\displaystyle 3,212525\cdot 10^{34}\;{\frac {kg}{s}}}
4
,
036978
⋅
10
35
k
g
s
{\displaystyle 4,036978\cdot 10^{35}\;{\frac {kg}{s}}}
Gravità di superficie
Gravità di superficie
[
L
]
[
M
]
[
T
]
−
2
{\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-2}}
a
r
s
≡
1
4
M
≡
F
P
m
r
s
=
m
P
c
t
P
=
c
4
4
π
G
{\displaystyle {a_{r}}_{\text{s}}\equiv {\frac {1}{4M}}\equiv {\frac {F_{\text{P}}}{{m_{r}}_{\text{s}}}}={\frac {m_{\text{P}}c}{t_{\text{P}}}}={\frac {c^{4}}{4\pi G}}}
a
r
s
≡
1
4
M
≡
F
P
m
r
s
=
m
P
c
t
P
=
c
4
G
{\displaystyle {a_{r}}_{\text{s}}\equiv {\frac {1}{4M}}\equiv {\frac {F_{\text{P}}}{{m_{r}}_{\text{s}}}}={\frac {m_{\text{P}}c}{t_{\text{P}}}}={\frac {c^{4}}{G}}}
9
,
630908
⋅
10
42
k
g
⋅
m
s
2
{\displaystyle 9,630908\cdot 10^{42}{\frac {kg\cdot m}{s^{2}}}}
1
,
210256
⋅
10
44
k
g
⋅
m
s
2
{\displaystyle 1,210256\cdot 10^{44}{\frac {kg\cdot m}{s^{2}}}}
Costante di accoppiamento di Planck
Teoria dell'informazione
(adimensionale)
α
G
P
=
m
r
s
2
=
(
m
P
m
P
)
2
=
4
π
G
m
P
2
ℏ
c
{\displaystyle {\alpha _{G}}_{\text{P}}={m_{r}}_{\text{s}}^{2}=\left({\frac {m_{\text{P}}}{m_{\text{P}}}}\right)^{2}={\frac {4\pi Gm_{\text{P}}^{2}}{\hbar c}}}
α
G
P
=
m
r
s
2
=
(
m
P
m
P
)
2
=
G
m
P
2
ℏ
c
{\displaystyle {\alpha _{G}}_{\text{P}}={m_{r}}_{\text{s}}^{2}=\left({\frac {m_{\text{P}}}{m_{\text{P}}}}\right)^{2}={\frac {Gm_{\text{P}}^{2}}{\hbar c}}}
1
1
Limite di Bekenstein di Planck[ 6] [ 7] [ 8]
Teoria dell'informazione
(adimensionale)
I
b
i
t
s
P
≤
2
π
α
G
P
log
[
2
]
=
2
π
l
P
E
P
ℏ
c
{\displaystyle {I_{_{bits}}}_{\text{P}}\leq {\frac {2\pi {\alpha _{G}}_{\text{P}}}{\log[2]}}={\frac {2\pi l_{\text{P}}E_{\text{P}}}{\hbar c}}}
9
,
064720
…
b
i
t
s
{\displaystyle 9,064720\ldots \mathrm {bits} }
≈
2
3
,
18
{\displaystyle \approx 2^{3,18}}
≈
1
,
133
b
y
t
e
s
{\displaystyle \approx 1,133\,\mathrm {bytes} }
Rapporto massa-massa di Planck
Teoria dell'informazione
(adimensionale)
m
r
s
=
m
P
m
P
{\displaystyle {m_{r}}_{\text{s}}={\frac {m_{\text{P}}}{m_{\text{P}}}}}
1
{\displaystyle 1}
Unità di Planck
Unita di Planck
(adimensionale)
α
G
P
=
m
r
s
=
m
P
m
P
{\displaystyle {\sqrt {{\alpha _{G}}_{\text{P}}}}={m_{r}}_{\text{s}}={\frac {m_{\text{P}}}{m_{\text{P}}}}}
α
G
P
=
m
r
s
=
m
P
m
P
{\displaystyle {\sqrt {{\alpha _{G}}_{\text{P}}}}={m_{r}}_{\text{s}}={\frac {m_{\text{P}}}{m_{\text{P}}}}}
1
{\displaystyle 1}
1
{\displaystyle 1}