Identità del triplo prodotto di Jacobi

(Reindirizzamento da Triplo prodotto di Jacobi)

In matematica, l'identità del triplo prodotto di Jacobi è l'identità matematica:

Per i numeri complessi x ed y, con |x| < 1 e y ≠ 0.

L'identità è attribuita a Karl Gustav Jacob Jacobi, che la dimostrò nel 1829 nella sua opera Fundamenta Nova Theoriae Functionum Ellipticarum.[1]

Questa relazione permette di generalizzare altri risultati, come il teorema dei numeri pentagonali di Eulero, essendo questo un caso speciale dell'identità del triplo prodotto di Jacobi.

Infatti, ponendo e , si ottiene

poi, notando che i tre termini a 2° membro dell'equazione sono consecutivi ed infine riordinando si ritrova il risultato di Eulero:

L'identità del triplo prodotto di Jacobi riesprime in forma di prodotto la funzione theta di Jacobi, normalmente scritta come serie:

o, appunto come

ponendo e

Usando l'identità del triplo prodotto di Jacobi possiamo perciò scrivere la funzione theta come il prodotto

Esistono diversi modi di esprimere l'identità del triplo prodotto di Jacobi. Assume una forma concisa quando viene espressa in termini dei q-simboli di Pochhammer.

dove è il q-simbolo infinito di Pochhammer.

Particolarmente elegante è invece la forma che prende quando viene espressa in termini della funzione theta di Ramanujan:

ove .

Dimostrazione

modifica

Per dimostrare l'identità del triplo prodotto di Jacobi si può ricorrere al seguente metodo. Si definisce la funzione   come:

 

e si osserva che sviluppando i fattori di  , si ottiene l'espressione

 

cioè i termini sono gli stessi della funzione calcolata in   a parte che la successione nella prima parentesi ha un termine in meno e la successione nella seconda parentesi ha un termina in più. Da cui

 

e quindi

 

Ora, definendo la funzione   come

 
 

Da cui

 

La funzione   si può sviluppare in una serie di potenze

 

che deve soddisfare

 

Con un cambio di indice   si ottiene

 

da cui

 

Quindi

 
 
 
 
 

Ricordando le definizioni di   e   si ricava il triplo prodotto di Jacobi

 
  1. ^ Remmert, R. (1998). Classical Topics in Complex Function Theory (pp. 28-30). New York: Springer.

Bibliografia

modifica
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica