∀ n ∈ N ∃ a , b ∈ N :< ∄ c , d ∈ N : ( c + 2 ) ( d + 2 ) = b ∨ ( c + 2 ) ( d + 2 ) = a > ∧ < 2 n = a + b > {\displaystyle \forall n\in \mathbb {N} \;\exists a,b\in \mathbb {N} \;:<\not \exists c,d\in \mathbb {N} \;:(c+2)(d+2)=b\;\vee \;(c+2)(d+2)=a>\;\land \;<2n=a+b>}
Vero o falso?